L(s) = 1 | + (2.29 + 0.120i)2-s + (5.30 + 6.55i)3-s + (−2.70 − 0.284i)4-s + (−8.16 + 7.63i)5-s + (11.3 + 15.6i)6-s + (16.6 + 8.19i)7-s + (−24.3 − 3.85i)8-s + (−9.17 + 43.1i)9-s + (−19.6 + 16.5i)10-s + (38.5 − 8.19i)11-s + (−12.4 − 19.2i)12-s + (−76.5 − 39.0i)13-s + (37.1 + 20.8i)14-s + (−93.3 − 12.9i)15-s + (−34.1 − 7.24i)16-s + (36.9 + 96.2i)17-s + ⋯ |
L(s) = 1 | + (0.811 + 0.0425i)2-s + (1.02 + 1.26i)3-s + (−0.337 − 0.0355i)4-s + (−0.730 + 0.683i)5-s + (0.775 + 1.06i)6-s + (0.896 + 0.442i)7-s + (−1.07 − 0.170i)8-s + (−0.339 + 1.59i)9-s + (−0.621 + 0.523i)10-s + (1.05 − 0.224i)11-s + (−0.300 − 0.462i)12-s + (−1.63 − 0.832i)13-s + (0.708 + 0.397i)14-s + (−1.60 − 0.223i)15-s + (−0.532 − 0.113i)16-s + (0.527 + 1.37i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(−0.602−0.798i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(−0.602−0.798i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
−0.602−0.798i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), −0.602−0.798i)
|
Particular Values
L(2) |
≈ |
1.18329+2.37475i |
L(21) |
≈ |
1.18329+2.37475i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(8.16−7.63i)T |
| 7 | 1+(−16.6−8.19i)T |
good | 2 | 1+(−2.29−0.120i)T+(7.95+0.836i)T2 |
| 3 | 1+(−5.30−6.55i)T+(−5.61+26.4i)T2 |
| 11 | 1+(−38.5+8.19i)T+(1.21e3−541.i)T2 |
| 13 | 1+(76.5+39.0i)T+(1.29e3+1.77e3i)T2 |
| 17 | 1+(−36.9−96.2i)T+(−3.65e3+3.28e3i)T2 |
| 19 | 1+(−6.01−57.2i)T+(−6.70e3+1.42e3i)T2 |
| 23 | 1+(2.32−44.4i)T+(−1.21e4−1.27e3i)T2 |
| 29 | 1+(−128.+177.i)T+(−7.53e3−2.31e4i)T2 |
| 31 | 1+(76.2−171.i)T+(−1.99e4−2.21e4i)T2 |
| 37 | 1+(−237.+154.i)T+(2.06e4−4.62e4i)T2 |
| 41 | 1+(−8.31+2.70i)T+(5.57e4−4.05e4i)T2 |
| 43 | 1+(−233.−233.i)T+7.95e4iT2 |
| 47 | 1+(−183.−70.3i)T+(7.71e4+6.94e4i)T2 |
| 53 | 1+(−231.+187.i)T+(3.09e4−1.45e5i)T2 |
| 59 | 1+(119.−132.i)T+(−2.14e4−2.04e5i)T2 |
| 61 | 1+(−336.+302.i)T+(2.37e4−2.25e5i)T2 |
| 67 | 1+(199.−76.5i)T+(2.23e5−2.01e5i)T2 |
| 71 | 1+(571.+415.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(90.8−139.i)T+(−1.58e5−3.55e5i)T2 |
| 79 | 1+(−21.6−48.6i)T+(−3.29e5+3.66e5i)T2 |
| 83 | 1+(41.9−264.i)T+(−5.43e5−1.76e5i)T2 |
| 89 | 1+(802.+890.i)T+(−7.36e4+7.01e5i)T2 |
| 97 | 1+(54.9+347.i)T+(−8.68e5+2.82e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.57097627598695150045708046244, −11.76234359068180635468915480378, −10.47610988318368287741060088026, −9.623839009652425118412700015350, −8.540872351935597022399942245207, −7.75181773707065985729433981260, −5.81061106446934075722156278307, −4.55342114704115067348453702349, −3.83663902178648595522085889125, −2.78115784032354832958710315398,
0.893045437498382894921775915518, 2.58879575173652230953393225885, 4.14474945462937653203606327755, 4.98758502191398690998522691125, 6.98222914058673202402868972383, 7.59852171287831508401237874929, 8.774233448857328322007941498934, 9.386234247109621858147374212428, 11.79213779265742166040205590314, 11.98308673251733451153270750221