Properties

Label 2-175-175.103-c3-0-19
Degree $2$
Conductor $175$
Sign $-0.602 - 0.798i$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.29 + 0.120i)2-s + (5.30 + 6.55i)3-s + (−2.70 − 0.284i)4-s + (−8.16 + 7.63i)5-s + (11.3 + 15.6i)6-s + (16.6 + 8.19i)7-s + (−24.3 − 3.85i)8-s + (−9.17 + 43.1i)9-s + (−19.6 + 16.5i)10-s + (38.5 − 8.19i)11-s + (−12.4 − 19.2i)12-s + (−76.5 − 39.0i)13-s + (37.1 + 20.8i)14-s + (−93.3 − 12.9i)15-s + (−34.1 − 7.24i)16-s + (36.9 + 96.2i)17-s + ⋯
L(s)  = 1  + (0.811 + 0.0425i)2-s + (1.02 + 1.26i)3-s + (−0.337 − 0.0355i)4-s + (−0.730 + 0.683i)5-s + (0.775 + 1.06i)6-s + (0.896 + 0.442i)7-s + (−1.07 − 0.170i)8-s + (−0.339 + 1.59i)9-s + (−0.621 + 0.523i)10-s + (1.05 − 0.224i)11-s + (−0.300 − 0.462i)12-s + (−1.63 − 0.832i)13-s + (0.708 + 0.397i)14-s + (−1.60 − 0.223i)15-s + (−0.532 − 0.113i)16-s + (0.527 + 1.37i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.602 - 0.798i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.602 - 0.798i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-0.602 - 0.798i$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ -0.602 - 0.798i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.18329 + 2.37475i\)
\(L(\frac12)\) \(\approx\) \(1.18329 + 2.37475i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (8.16 - 7.63i)T \)
7 \( 1 + (-16.6 - 8.19i)T \)
good2 \( 1 + (-2.29 - 0.120i)T + (7.95 + 0.836i)T^{2} \)
3 \( 1 + (-5.30 - 6.55i)T + (-5.61 + 26.4i)T^{2} \)
11 \( 1 + (-38.5 + 8.19i)T + (1.21e3 - 541. i)T^{2} \)
13 \( 1 + (76.5 + 39.0i)T + (1.29e3 + 1.77e3i)T^{2} \)
17 \( 1 + (-36.9 - 96.2i)T + (-3.65e3 + 3.28e3i)T^{2} \)
19 \( 1 + (-6.01 - 57.2i)T + (-6.70e3 + 1.42e3i)T^{2} \)
23 \( 1 + (2.32 - 44.4i)T + (-1.21e4 - 1.27e3i)T^{2} \)
29 \( 1 + (-128. + 177. i)T + (-7.53e3 - 2.31e4i)T^{2} \)
31 \( 1 + (76.2 - 171. i)T + (-1.99e4 - 2.21e4i)T^{2} \)
37 \( 1 + (-237. + 154. i)T + (2.06e4 - 4.62e4i)T^{2} \)
41 \( 1 + (-8.31 + 2.70i)T + (5.57e4 - 4.05e4i)T^{2} \)
43 \( 1 + (-233. - 233. i)T + 7.95e4iT^{2} \)
47 \( 1 + (-183. - 70.3i)T + (7.71e4 + 6.94e4i)T^{2} \)
53 \( 1 + (-231. + 187. i)T + (3.09e4 - 1.45e5i)T^{2} \)
59 \( 1 + (119. - 132. i)T + (-2.14e4 - 2.04e5i)T^{2} \)
61 \( 1 + (-336. + 302. i)T + (2.37e4 - 2.25e5i)T^{2} \)
67 \( 1 + (199. - 76.5i)T + (2.23e5 - 2.01e5i)T^{2} \)
71 \( 1 + (571. + 415. i)T + (1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (90.8 - 139. i)T + (-1.58e5 - 3.55e5i)T^{2} \)
79 \( 1 + (-21.6 - 48.6i)T + (-3.29e5 + 3.66e5i)T^{2} \)
83 \( 1 + (41.9 - 264. i)T + (-5.43e5 - 1.76e5i)T^{2} \)
89 \( 1 + (802. + 890. i)T + (-7.36e4 + 7.01e5i)T^{2} \)
97 \( 1 + (54.9 + 347. i)T + (-8.68e5 + 2.82e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.57097627598695150045708046244, −11.76234359068180635468915480378, −10.47610988318368287741060088026, −9.623839009652425118412700015350, −8.540872351935597022399942245207, −7.75181773707065985729433981260, −5.81061106446934075722156278307, −4.55342114704115067348453702349, −3.83663902178648595522085889125, −2.78115784032354832958710315398, 0.893045437498382894921775915518, 2.58879575173652230953393225885, 4.14474945462937653203606327755, 4.98758502191398690998522691125, 6.98222914058673202402868972383, 7.59852171287831508401237874929, 8.774233448857328322007941498934, 9.386234247109621858147374212428, 11.79213779265742166040205590314, 11.98308673251733451153270750221

Graph of the $Z$-function along the critical line