L(s) = 1 | + (−0.757 − 0.0397i)2-s + (−6.12 − 7.56i)3-s + (−7.38 − 0.776i)4-s + (10.8 + 2.49i)5-s + (4.34 + 5.97i)6-s + (2.54 + 18.3i)7-s + (11.5 + 1.83i)8-s + (−14.0 + 66.3i)9-s + (−8.16 − 2.32i)10-s + (32.3 − 6.87i)11-s + (39.3 + 60.6i)12-s + (−26.8 − 13.6i)13-s + (−1.20 − 14.0i)14-s + (−47.8 − 97.7i)15-s + (49.4 + 10.5i)16-s + (−20.5 − 53.5i)17-s + ⋯ |
L(s) = 1 | + (−0.267 − 0.0140i)2-s + (−1.17 − 1.45i)3-s + (−0.922 − 0.0970i)4-s + (0.974 + 0.223i)5-s + (0.295 + 0.406i)6-s + (0.137 + 0.990i)7-s + (0.511 + 0.0809i)8-s + (−0.522 + 2.45i)9-s + (−0.258 − 0.0735i)10-s + (0.887 − 0.188i)11-s + (0.947 + 1.45i)12-s + (−0.571 − 0.291i)13-s + (−0.0229 − 0.267i)14-s + (−0.824 − 1.68i)15-s + (0.771 + 0.164i)16-s + (−0.293 − 0.763i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.757+0.652i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(0.757+0.652i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.757+0.652i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), 0.757+0.652i)
|
Particular Values
L(2) |
≈ |
0.853093−0.316848i |
L(21) |
≈ |
0.853093−0.316848i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−10.8−2.49i)T |
| 7 | 1+(−2.54−18.3i)T |
good | 2 | 1+(0.757+0.0397i)T+(7.95+0.836i)T2 |
| 3 | 1+(6.12+7.56i)T+(−5.61+26.4i)T2 |
| 11 | 1+(−32.3+6.87i)T+(1.21e3−541.i)T2 |
| 13 | 1+(26.8+13.6i)T+(1.29e3+1.77e3i)T2 |
| 17 | 1+(20.5+53.5i)T+(−3.65e3+3.28e3i)T2 |
| 19 | 1+(−7.59−72.2i)T+(−6.70e3+1.42e3i)T2 |
| 23 | 1+(−2.68+51.2i)T+(−1.21e4−1.27e3i)T2 |
| 29 | 1+(−132.+182.i)T+(−7.53e3−2.31e4i)T2 |
| 31 | 1+(109.−246.i)T+(−1.99e4−2.21e4i)T2 |
| 37 | 1+(−233.+151.i)T+(2.06e4−4.62e4i)T2 |
| 41 | 1+(145.−47.2i)T+(5.57e4−4.05e4i)T2 |
| 43 | 1+(−234.−234.i)T+7.95e4iT2 |
| 47 | 1+(−276.−106.i)T+(7.71e4+6.94e4i)T2 |
| 53 | 1+(−407.+329.i)T+(3.09e4−1.45e5i)T2 |
| 59 | 1+(−371.+412.i)T+(−2.14e4−2.04e5i)T2 |
| 61 | 1+(−79.3+71.4i)T+(2.37e4−2.25e5i)T2 |
| 67 | 1+(69.2−26.5i)T+(2.23e5−2.01e5i)T2 |
| 71 | 1+(−646.−469.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(−382.+589.i)T+(−1.58e5−3.55e5i)T2 |
| 79 | 1+(−194.−437.i)T+(−3.29e5+3.66e5i)T2 |
| 83 | 1+(−67.8+428.i)T+(−5.43e5−1.76e5i)T2 |
| 89 | 1+(−85.3−94.8i)T+(−7.36e4+7.01e5i)T2 |
| 97 | 1+(35.2+222.i)T+(−8.68e5+2.82e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.30502522171108415620363827891, −11.34233902167158140212201912993, −10.16082270629189016372403543101, −9.080954804826475836321661802271, −7.967405839312511822671719253554, −6.67192941310378496845196856562, −5.79960559619093912785227077806, −5.00326723070856035257704091201, −2.24142012288609153705417077844, −0.903329193567513662995772088935,
0.822072578539898919132865838148, 3.94915656489743683191416814468, 4.64108738406049609812787298815, 5.64024260347428536558073616871, 6.89910262988817934581033680730, 8.875219732330704889157530535636, 9.547826061461351232370747490359, 10.23528159415982167662239245619, 11.01457843681060086073667071727, 12.22470066308115824592911841660