Properties

Label 2-175-175.103-c3-0-17
Degree $2$
Conductor $175$
Sign $0.757 + 0.652i$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.757 − 0.0397i)2-s + (−6.12 − 7.56i)3-s + (−7.38 − 0.776i)4-s + (10.8 + 2.49i)5-s + (4.34 + 5.97i)6-s + (2.54 + 18.3i)7-s + (11.5 + 1.83i)8-s + (−14.0 + 66.3i)9-s + (−8.16 − 2.32i)10-s + (32.3 − 6.87i)11-s + (39.3 + 60.6i)12-s + (−26.8 − 13.6i)13-s + (−1.20 − 14.0i)14-s + (−47.8 − 97.7i)15-s + (49.4 + 10.5i)16-s + (−20.5 − 53.5i)17-s + ⋯
L(s)  = 1  + (−0.267 − 0.0140i)2-s + (−1.17 − 1.45i)3-s + (−0.922 − 0.0970i)4-s + (0.974 + 0.223i)5-s + (0.295 + 0.406i)6-s + (0.137 + 0.990i)7-s + (0.511 + 0.0809i)8-s + (−0.522 + 2.45i)9-s + (−0.258 − 0.0735i)10-s + (0.887 − 0.188i)11-s + (0.947 + 1.45i)12-s + (−0.571 − 0.291i)13-s + (−0.0229 − 0.267i)14-s + (−0.824 − 1.68i)15-s + (0.771 + 0.164i)16-s + (−0.293 − 0.763i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.757 + 0.652i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.757 + 0.652i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $0.757 + 0.652i$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ 0.757 + 0.652i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.853093 - 0.316848i\)
\(L(\frac12)\) \(\approx\) \(0.853093 - 0.316848i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-10.8 - 2.49i)T \)
7 \( 1 + (-2.54 - 18.3i)T \)
good2 \( 1 + (0.757 + 0.0397i)T + (7.95 + 0.836i)T^{2} \)
3 \( 1 + (6.12 + 7.56i)T + (-5.61 + 26.4i)T^{2} \)
11 \( 1 + (-32.3 + 6.87i)T + (1.21e3 - 541. i)T^{2} \)
13 \( 1 + (26.8 + 13.6i)T + (1.29e3 + 1.77e3i)T^{2} \)
17 \( 1 + (20.5 + 53.5i)T + (-3.65e3 + 3.28e3i)T^{2} \)
19 \( 1 + (-7.59 - 72.2i)T + (-6.70e3 + 1.42e3i)T^{2} \)
23 \( 1 + (-2.68 + 51.2i)T + (-1.21e4 - 1.27e3i)T^{2} \)
29 \( 1 + (-132. + 182. i)T + (-7.53e3 - 2.31e4i)T^{2} \)
31 \( 1 + (109. - 246. i)T + (-1.99e4 - 2.21e4i)T^{2} \)
37 \( 1 + (-233. + 151. i)T + (2.06e4 - 4.62e4i)T^{2} \)
41 \( 1 + (145. - 47.2i)T + (5.57e4 - 4.05e4i)T^{2} \)
43 \( 1 + (-234. - 234. i)T + 7.95e4iT^{2} \)
47 \( 1 + (-276. - 106. i)T + (7.71e4 + 6.94e4i)T^{2} \)
53 \( 1 + (-407. + 329. i)T + (3.09e4 - 1.45e5i)T^{2} \)
59 \( 1 + (-371. + 412. i)T + (-2.14e4 - 2.04e5i)T^{2} \)
61 \( 1 + (-79.3 + 71.4i)T + (2.37e4 - 2.25e5i)T^{2} \)
67 \( 1 + (69.2 - 26.5i)T + (2.23e5 - 2.01e5i)T^{2} \)
71 \( 1 + (-646. - 469. i)T + (1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (-382. + 589. i)T + (-1.58e5 - 3.55e5i)T^{2} \)
79 \( 1 + (-194. - 437. i)T + (-3.29e5 + 3.66e5i)T^{2} \)
83 \( 1 + (-67.8 + 428. i)T + (-5.43e5 - 1.76e5i)T^{2} \)
89 \( 1 + (-85.3 - 94.8i)T + (-7.36e4 + 7.01e5i)T^{2} \)
97 \( 1 + (35.2 + 222. i)T + (-8.68e5 + 2.82e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.30502522171108415620363827891, −11.34233902167158140212201912993, −10.16082270629189016372403543101, −9.080954804826475836321661802271, −7.967405839312511822671719253554, −6.67192941310378496845196856562, −5.79960559619093912785227077806, −5.00326723070856035257704091201, −2.24142012288609153705417077844, −0.903329193567513662995772088935, 0.822072578539898919132865838148, 3.94915656489743683191416814468, 4.64108738406049609812787298815, 5.64024260347428536558073616871, 6.89910262988817934581033680730, 8.875219732330704889157530535636, 9.547826061461351232370747490359, 10.23528159415982167662239245619, 11.01457843681060086073667071727, 12.22470066308115824592911841660

Graph of the $Z$-function along the critical line