L(s) = 1 | + (−0.570 − 0.0299i)2-s + (1.41 + 1.74i)3-s + (−7.63 − 0.802i)4-s + (−10.8 − 2.77i)5-s + (−0.756 − 1.04i)6-s + (18.4 − 0.955i)7-s + (8.84 + 1.40i)8-s + (4.55 − 21.4i)9-s + (6.09 + 1.90i)10-s + (−42.9 + 9.13i)11-s + (−9.41 − 14.4i)12-s + (63.7 + 32.4i)13-s + (−10.5 − 0.00760i)14-s + (−10.4 − 22.8i)15-s + (55.0 + 11.6i)16-s + (44.2 + 115. i)17-s + ⋯ |
L(s) = 1 | + (−0.201 − 0.0105i)2-s + (0.272 + 0.336i)3-s + (−0.953 − 0.100i)4-s + (−0.968 − 0.248i)5-s + (−0.0514 − 0.0708i)6-s + (0.998 − 0.0516i)7-s + (0.390 + 0.0619i)8-s + (0.168 − 0.794i)9-s + (0.192 + 0.0603i)10-s + (−1.17 + 0.250i)11-s + (−0.226 − 0.348i)12-s + (1.35 + 0.692i)13-s + (−0.202 − 0.000145i)14-s + (−0.180 − 0.393i)15-s + (0.860 + 0.182i)16-s + (0.631 + 1.64i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.750−0.660i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(0.750−0.660i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.750−0.660i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), 0.750−0.660i)
|
Particular Values
L(2) |
≈ |
1.11841+0.421948i |
L(21) |
≈ |
1.11841+0.421948i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(10.8+2.77i)T |
| 7 | 1+(−18.4+0.955i)T |
good | 2 | 1+(0.570+0.0299i)T+(7.95+0.836i)T2 |
| 3 | 1+(−1.41−1.74i)T+(−5.61+26.4i)T2 |
| 11 | 1+(42.9−9.13i)T+(1.21e3−541.i)T2 |
| 13 | 1+(−63.7−32.4i)T+(1.29e3+1.77e3i)T2 |
| 17 | 1+(−44.2−115.i)T+(−3.65e3+3.28e3i)T2 |
| 19 | 1+(2.03+19.3i)T+(−6.70e3+1.42e3i)T2 |
| 23 | 1+(5.56−106.i)T+(−1.21e4−1.27e3i)T2 |
| 29 | 1+(0.465−0.640i)T+(−7.53e3−2.31e4i)T2 |
| 31 | 1+(−2.69+6.05i)T+(−1.99e4−2.21e4i)T2 |
| 37 | 1+(−305.+198.i)T+(2.06e4−4.62e4i)T2 |
| 41 | 1+(113.−36.7i)T+(5.57e4−4.05e4i)T2 |
| 43 | 1+(−18.9−18.9i)T+7.95e4iT2 |
| 47 | 1+(−525.−201.i)T+(7.71e4+6.94e4i)T2 |
| 53 | 1+(109.−89.0i)T+(3.09e4−1.45e5i)T2 |
| 59 | 1+(−499.+554.i)T+(−2.14e4−2.04e5i)T2 |
| 61 | 1+(430.−387.i)T+(2.37e4−2.25e5i)T2 |
| 67 | 1+(389.−149.i)T+(2.23e5−2.01e5i)T2 |
| 71 | 1+(−107.−78.3i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(245.−377.i)T+(−1.58e5−3.55e5i)T2 |
| 79 | 1+(50.0+112.i)T+(−3.29e5+3.66e5i)T2 |
| 83 | 1+(23.6−149.i)T+(−5.43e5−1.76e5i)T2 |
| 89 | 1+(−393.−437.i)T+(−7.36e4+7.01e5i)T2 |
| 97 | 1+(221.+1.39e3i)T+(−8.68e5+2.82e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.44315280858663289085522143865, −11.24479204952444672362364110701, −10.38399044284884828825527566878, −9.115684148002768865350421167145, −8.360789972555113442430544432695, −7.64482271515711812814414700831, −5.73735038490609356170994001591, −4.39247305426852343218582258434, −3.72553138361596334432583966665, −1.15768507250732171109779062139,
0.76106737215995713429228777714, 2.93257870759969390599458755534, 4.45992177072927893520872812543, 5.39752399278519783236557611689, 7.48712554445071272019903792777, 8.043379824662921419657158937483, 8.665177168546088139732537860791, 10.32881498224520909980291220392, 11.01547786940007034672067362815, 12.18170316688670297223202706026