L(s) = 1 | + (−1.59 − 0.0837i)2-s + (−4.11 − 5.08i)3-s + (−5.40 − 0.568i)4-s + (−9.89 + 5.20i)5-s + (6.15 + 8.46i)6-s + (−14.4 + 11.5i)7-s + (21.2 + 3.36i)8-s + (−3.27 + 15.3i)9-s + (16.2 − 7.49i)10-s + (−56.8 + 12.0i)11-s + (19.3 + 29.8i)12-s + (−10.5 − 5.36i)13-s + (24.0 − 17.2i)14-s + (67.1 + 28.8i)15-s + (8.85 + 1.88i)16-s + (−7.45 − 19.4i)17-s + ⋯ |
L(s) = 1 | + (−0.565 − 0.0296i)2-s + (−0.791 − 0.977i)3-s + (−0.675 − 0.0710i)4-s + (−0.884 + 0.465i)5-s + (0.418 + 0.576i)6-s + (−0.781 + 0.624i)7-s + (0.939 + 0.148i)8-s + (−0.121 + 0.570i)9-s + (0.514 − 0.236i)10-s + (−1.55 + 0.331i)11-s + (0.465 + 0.717i)12-s + (−0.224 − 0.114i)13-s + (0.460 − 0.329i)14-s + (1.15 + 0.496i)15-s + (0.138 + 0.0294i)16-s + (−0.106 − 0.276i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.947+0.320i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(0.947+0.320i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.947+0.320i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), 0.947+0.320i)
|
Particular Values
L(2) |
≈ |
0.255809−0.0421656i |
L(21) |
≈ |
0.255809−0.0421656i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(9.89−5.20i)T |
| 7 | 1+(14.4−11.5i)T |
good | 2 | 1+(1.59+0.0837i)T+(7.95+0.836i)T2 |
| 3 | 1+(4.11+5.08i)T+(−5.61+26.4i)T2 |
| 11 | 1+(56.8−12.0i)T+(1.21e3−541.i)T2 |
| 13 | 1+(10.5+5.36i)T+(1.29e3+1.77e3i)T2 |
| 17 | 1+(7.45+19.4i)T+(−3.65e3+3.28e3i)T2 |
| 19 | 1+(8.62+82.0i)T+(−6.70e3+1.42e3i)T2 |
| 23 | 1+(0.885−16.8i)T+(−1.21e4−1.27e3i)T2 |
| 29 | 1+(−93.2+128.i)T+(−7.53e3−2.31e4i)T2 |
| 31 | 1+(−2.66+5.98i)T+(−1.99e4−2.21e4i)T2 |
| 37 | 1+(210.−136.i)T+(2.06e4−4.62e4i)T2 |
| 41 | 1+(−262.+85.2i)T+(5.57e4−4.05e4i)T2 |
| 43 | 1+(−313.−313.i)T+7.95e4iT2 |
| 47 | 1+(−305.−117.i)T+(7.71e4+6.94e4i)T2 |
| 53 | 1+(371.−301.i)T+(3.09e4−1.45e5i)T2 |
| 59 | 1+(376.−418.i)T+(−2.14e4−2.04e5i)T2 |
| 61 | 1+(−32.2+29.0i)T+(2.37e4−2.25e5i)T2 |
| 67 | 1+(160.−61.6i)T+(2.23e5−2.01e5i)T2 |
| 71 | 1+(212.+154.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(−332.+511.i)T+(−1.58e5−3.55e5i)T2 |
| 79 | 1+(105.+237.i)T+(−3.29e5+3.66e5i)T2 |
| 83 | 1+(200.−1.26e3i)T+(−5.43e5−1.76e5i)T2 |
| 89 | 1+(621.+690.i)T+(−7.36e4+7.01e5i)T2 |
| 97 | 1+(160.+1.01e3i)T+(−8.68e5+2.82e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.34123963695066235573412818410, −11.19990432308991643304970278270, −10.29071944958069824844962003962, −9.128526588754261880779683482729, −7.87776821303969113251561776373, −7.20895560871345278265534045760, −5.93520802773859395724745251533, −4.66569112503282508364772755407, −2.72057945850257021327463892021, −0.48069041928634802393870108664,
0.39413555068805695081450345532, 3.64082799771803796745804437039, 4.59074842869579561965501993061, 5.55826495567651534317814965535, 7.39401616703320198923690918842, 8.297767837102523137437634650557, 9.433310023492391645976565993054, 10.48510764659891912629988288712, 10.75255844073591600161194335430, 12.34174495907763076852519744354