Properties

Label 2-175-175.103-c3-0-12
Degree $2$
Conductor $175$
Sign $0.947 + 0.320i$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.59 − 0.0837i)2-s + (−4.11 − 5.08i)3-s + (−5.40 − 0.568i)4-s + (−9.89 + 5.20i)5-s + (6.15 + 8.46i)6-s + (−14.4 + 11.5i)7-s + (21.2 + 3.36i)8-s + (−3.27 + 15.3i)9-s + (16.2 − 7.49i)10-s + (−56.8 + 12.0i)11-s + (19.3 + 29.8i)12-s + (−10.5 − 5.36i)13-s + (24.0 − 17.2i)14-s + (67.1 + 28.8i)15-s + (8.85 + 1.88i)16-s + (−7.45 − 19.4i)17-s + ⋯
L(s)  = 1  + (−0.565 − 0.0296i)2-s + (−0.791 − 0.977i)3-s + (−0.675 − 0.0710i)4-s + (−0.884 + 0.465i)5-s + (0.418 + 0.576i)6-s + (−0.781 + 0.624i)7-s + (0.939 + 0.148i)8-s + (−0.121 + 0.570i)9-s + (0.514 − 0.236i)10-s + (−1.55 + 0.331i)11-s + (0.465 + 0.717i)12-s + (−0.224 − 0.114i)13-s + (0.460 − 0.329i)14-s + (1.15 + 0.496i)15-s + (0.138 + 0.0294i)16-s + (−0.106 − 0.276i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.947 + 0.320i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.947 + 0.320i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $0.947 + 0.320i$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ 0.947 + 0.320i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.255809 - 0.0421656i\)
\(L(\frac12)\) \(\approx\) \(0.255809 - 0.0421656i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (9.89 - 5.20i)T \)
7 \( 1 + (14.4 - 11.5i)T \)
good2 \( 1 + (1.59 + 0.0837i)T + (7.95 + 0.836i)T^{2} \)
3 \( 1 + (4.11 + 5.08i)T + (-5.61 + 26.4i)T^{2} \)
11 \( 1 + (56.8 - 12.0i)T + (1.21e3 - 541. i)T^{2} \)
13 \( 1 + (10.5 + 5.36i)T + (1.29e3 + 1.77e3i)T^{2} \)
17 \( 1 + (7.45 + 19.4i)T + (-3.65e3 + 3.28e3i)T^{2} \)
19 \( 1 + (8.62 + 82.0i)T + (-6.70e3 + 1.42e3i)T^{2} \)
23 \( 1 + (0.885 - 16.8i)T + (-1.21e4 - 1.27e3i)T^{2} \)
29 \( 1 + (-93.2 + 128. i)T + (-7.53e3 - 2.31e4i)T^{2} \)
31 \( 1 + (-2.66 + 5.98i)T + (-1.99e4 - 2.21e4i)T^{2} \)
37 \( 1 + (210. - 136. i)T + (2.06e4 - 4.62e4i)T^{2} \)
41 \( 1 + (-262. + 85.2i)T + (5.57e4 - 4.05e4i)T^{2} \)
43 \( 1 + (-313. - 313. i)T + 7.95e4iT^{2} \)
47 \( 1 + (-305. - 117. i)T + (7.71e4 + 6.94e4i)T^{2} \)
53 \( 1 + (371. - 301. i)T + (3.09e4 - 1.45e5i)T^{2} \)
59 \( 1 + (376. - 418. i)T + (-2.14e4 - 2.04e5i)T^{2} \)
61 \( 1 + (-32.2 + 29.0i)T + (2.37e4 - 2.25e5i)T^{2} \)
67 \( 1 + (160. - 61.6i)T + (2.23e5 - 2.01e5i)T^{2} \)
71 \( 1 + (212. + 154. i)T + (1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (-332. + 511. i)T + (-1.58e5 - 3.55e5i)T^{2} \)
79 \( 1 + (105. + 237. i)T + (-3.29e5 + 3.66e5i)T^{2} \)
83 \( 1 + (200. - 1.26e3i)T + (-5.43e5 - 1.76e5i)T^{2} \)
89 \( 1 + (621. + 690. i)T + (-7.36e4 + 7.01e5i)T^{2} \)
97 \( 1 + (160. + 1.01e3i)T + (-8.68e5 + 2.82e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.34123963695066235573412818410, −11.19990432308991643304970278270, −10.29071944958069824844962003962, −9.128526588754261880779683482729, −7.87776821303969113251561776373, −7.20895560871345278265534045760, −5.93520802773859395724745251533, −4.66569112503282508364772755407, −2.72057945850257021327463892021, −0.48069041928634802393870108664, 0.39413555068805695081450345532, 3.64082799771803796745804437039, 4.59074842869579561965501993061, 5.55826495567651534317814965535, 7.39401616703320198923690918842, 8.297767837102523137437634650557, 9.433310023492391645976565993054, 10.48510764659891912629988288712, 10.75255844073591600161194335430, 12.34174495907763076852519744354

Graph of the $Z$-function along the critical line