L(s) = 1 | + (−2.08 − 0.109i)2-s + (−0.522 − 0.645i)3-s + (2.35 + 0.247i)4-s + (1.15 − 1.91i)5-s + (1.02 + 1.40i)6-s + (−1.53 + 2.15i)7-s + (−0.767 − 0.121i)8-s + (0.480 − 2.25i)9-s + (−2.61 + 3.87i)10-s + (1.02 − 0.218i)11-s + (−1.07 − 1.65i)12-s + (−4.08 − 2.08i)13-s + (3.43 − 4.33i)14-s + (−1.83 + 0.259i)15-s + (−3.05 − 0.648i)16-s + (−0.808 − 2.10i)17-s + ⋯ |
L(s) = 1 | + (−1.47 − 0.0773i)2-s + (−0.301 − 0.372i)3-s + (1.17 + 0.123i)4-s + (0.514 − 0.857i)5-s + (0.416 + 0.573i)6-s + (−0.578 + 0.815i)7-s + (−0.271 − 0.0429i)8-s + (0.160 − 0.753i)9-s + (−0.826 + 1.22i)10-s + (0.309 − 0.0658i)11-s + (−0.309 − 0.476i)12-s + (−1.13 − 0.576i)13-s + (0.917 − 1.15i)14-s + (−0.474 + 0.0669i)15-s + (−0.762 − 0.162i)16-s + (−0.196 − 0.510i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(−0.502+0.864i)Λ(2−s)
Λ(s)=(=(175s/2ΓC(s+1/2)L(s)(−0.502+0.864i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
−0.502+0.864i
|
Analytic conductor: |
1.39738 |
Root analytic conductor: |
1.18210 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :1/2), −0.502+0.864i)
|
Particular Values
L(1) |
≈ |
0.207276−0.360298i |
L(21) |
≈ |
0.207276−0.360298i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−1.15+1.91i)T |
| 7 | 1+(1.53−2.15i)T |
good | 2 | 1+(2.08+0.109i)T+(1.98+0.209i)T2 |
| 3 | 1+(0.522+0.645i)T+(−0.623+2.93i)T2 |
| 11 | 1+(−1.02+0.218i)T+(10.0−4.47i)T2 |
| 13 | 1+(4.08+2.08i)T+(7.64+10.5i)T2 |
| 17 | 1+(0.808+2.10i)T+(−12.6+11.3i)T2 |
| 19 | 1+(0.520+4.95i)T+(−18.5+3.95i)T2 |
| 23 | 1+(−0.325+6.21i)T+(−22.8−2.40i)T2 |
| 29 | 1+(0.743−1.02i)T+(−8.96−27.5i)T2 |
| 31 | 1+(4.14−9.30i)T+(−20.7−23.0i)T2 |
| 37 | 1+(−5.27+3.42i)T+(15.0−33.8i)T2 |
| 41 | 1+(−5.32+1.72i)T+(33.1−24.0i)T2 |
| 43 | 1+(−4.80−4.80i)T+43iT2 |
| 47 | 1+(−0.292−0.112i)T+(34.9+31.4i)T2 |
| 53 | 1+(0.217−0.176i)T+(11.0−51.8i)T2 |
| 59 | 1+(−4.60+5.10i)T+(−6.16−58.6i)T2 |
| 61 | 1+(3.94−3.54i)T+(6.37−60.6i)T2 |
| 67 | 1+(−11.4+4.40i)T+(49.7−44.8i)T2 |
| 71 | 1+(1.66+1.21i)T+(21.9+67.5i)T2 |
| 73 | 1+(0.705−1.08i)T+(−29.6−66.6i)T2 |
| 79 | 1+(−4.40−9.89i)T+(−52.8+58.7i)T2 |
| 83 | 1+(−0.579+3.66i)T+(−78.9−25.6i)T2 |
| 89 | 1+(7.09+7.88i)T+(−9.30+88.5i)T2 |
| 97 | 1+(−0.775−4.89i)T+(−92.2+29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.44726637983619033377961124412, −11.26804222401800146732788054320, −9.995899769024630352779612250690, −9.219726101741418026462953246107, −8.747384081224042864929566871157, −7.31373198820898349899991275549, −6.32865192128933979834614412303, −4.93845354345741177491605910609, −2.44336130855628570487791401299, −0.62528622972363830762816323416,
2.04077445859095896719620692889, 4.10657378085350231198272163881, 5.96133894689628738653610492216, 7.19519902023888544789334216266, 7.76952956264058566377823265653, 9.531803884530938415456409895221, 9.841424577074642953057877984580, 10.70319588278993512729038435537, 11.46345889475111038229130662719, 13.11399039740614589734375981634