L(s) = 1 | + (−1.80 − 0.0947i)2-s + (1.32 + 1.64i)3-s + (1.27 + 0.133i)4-s + (2.03 − 0.932i)5-s + (−2.24 − 3.09i)6-s + (0.405 − 2.61i)7-s + (1.29 + 0.204i)8-s + (−0.303 + 1.42i)9-s + (−3.76 + 1.49i)10-s + (−2.23 + 0.474i)11-s + (1.46 + 2.26i)12-s + (4.21 + 2.14i)13-s + (−0.981 + 4.68i)14-s + (4.23 + 2.09i)15-s + (−4.81 − 1.02i)16-s + (1.33 + 3.47i)17-s + ⋯ |
L(s) = 1 | + (−1.27 − 0.0669i)2-s + (0.767 + 0.947i)3-s + (0.635 + 0.0667i)4-s + (0.908 − 0.417i)5-s + (−0.917 − 1.26i)6-s + (0.153 − 0.988i)7-s + (0.456 + 0.0723i)8-s + (−0.101 + 0.475i)9-s + (−1.18 + 0.472i)10-s + (−0.672 + 0.142i)11-s + (0.424 + 0.653i)12-s + (1.16 + 0.595i)13-s + (−0.262 + 1.25i)14-s + (1.09 + 0.541i)15-s + (−1.20 − 0.255i)16-s + (0.323 + 0.841i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.953−0.302i)Λ(2−s)
Λ(s)=(=(175s/2ΓC(s+1/2)L(s)(0.953−0.302i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.953−0.302i
|
Analytic conductor: |
1.39738 |
Root analytic conductor: |
1.18210 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :1/2), 0.953−0.302i)
|
Particular Values
L(1) |
≈ |
0.887350+0.137579i |
L(21) |
≈ |
0.887350+0.137579i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−2.03+0.932i)T |
| 7 | 1+(−0.405+2.61i)T |
good | 2 | 1+(1.80+0.0947i)T+(1.98+0.209i)T2 |
| 3 | 1+(−1.32−1.64i)T+(−0.623+2.93i)T2 |
| 11 | 1+(2.23−0.474i)T+(10.0−4.47i)T2 |
| 13 | 1+(−4.21−2.14i)T+(7.64+10.5i)T2 |
| 17 | 1+(−1.33−3.47i)T+(−12.6+11.3i)T2 |
| 19 | 1+(0.216+2.05i)T+(−18.5+3.95i)T2 |
| 23 | 1+(0.0829−1.58i)T+(−22.8−2.40i)T2 |
| 29 | 1+(6.19−8.53i)T+(−8.96−27.5i)T2 |
| 31 | 1+(−1.38+3.11i)T+(−20.7−23.0i)T2 |
| 37 | 1+(1.80−1.17i)T+(15.0−33.8i)T2 |
| 41 | 1+(4.99−1.62i)T+(33.1−24.0i)T2 |
| 43 | 1+(6.27+6.27i)T+43iT2 |
| 47 | 1+(6.00+2.30i)T+(34.9+31.4i)T2 |
| 53 | 1+(3.15−2.55i)T+(11.0−51.8i)T2 |
| 59 | 1+(−8.50+9.44i)T+(−6.16−58.6i)T2 |
| 61 | 1+(0.722−0.650i)T+(6.37−60.6i)T2 |
| 67 | 1+(−9.57+3.67i)T+(49.7−44.8i)T2 |
| 71 | 1+(1.86+1.35i)T+(21.9+67.5i)T2 |
| 73 | 1+(4.27−6.58i)T+(−29.6−66.6i)T2 |
| 79 | 1+(4.69+10.5i)T+(−52.8+58.7i)T2 |
| 83 | 1+(0.909−5.73i)T+(−78.9−25.6i)T2 |
| 89 | 1+(4.47+4.96i)T+(−9.30+88.5i)T2 |
| 97 | 1+(−0.453−2.86i)T+(−92.2+29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.07814255627351701961453353091, −11.11053263854284980874143142846, −10.33917675888792270995233323508, −9.733507759151260286057643259769, −8.841236619389063351066438995784, −8.193997597528185509004617275988, −6.78843173216019079219414179524, −4.99750786637677396197013132397, −3.69830820686217174089275104814, −1.61965023190202143339984723878,
1.65520564261159025494348415708, 2.80935563889523435262909064245, 5.49438649011679169972901056546, 6.71847062583564697538434948589, 7.931183046560204477808784710717, 8.452912396832560734833371872007, 9.454986886006782610416006463353, 10.36012307199290581393189061146, 11.45803625846814305770474350609, 12.98898226359515477803640489384