Properties

Label 2-175-175.103-c1-0-7
Degree $2$
Conductor $175$
Sign $0.953 - 0.302i$
Analytic cond. $1.39738$
Root an. cond. $1.18210$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.80 − 0.0947i)2-s + (1.32 + 1.64i)3-s + (1.27 + 0.133i)4-s + (2.03 − 0.932i)5-s + (−2.24 − 3.09i)6-s + (0.405 − 2.61i)7-s + (1.29 + 0.204i)8-s + (−0.303 + 1.42i)9-s + (−3.76 + 1.49i)10-s + (−2.23 + 0.474i)11-s + (1.46 + 2.26i)12-s + (4.21 + 2.14i)13-s + (−0.981 + 4.68i)14-s + (4.23 + 2.09i)15-s + (−4.81 − 1.02i)16-s + (1.33 + 3.47i)17-s + ⋯
L(s)  = 1  + (−1.27 − 0.0669i)2-s + (0.767 + 0.947i)3-s + (0.635 + 0.0667i)4-s + (0.908 − 0.417i)5-s + (−0.917 − 1.26i)6-s + (0.153 − 0.988i)7-s + (0.456 + 0.0723i)8-s + (−0.101 + 0.475i)9-s + (−1.18 + 0.472i)10-s + (−0.672 + 0.142i)11-s + (0.424 + 0.653i)12-s + (1.16 + 0.595i)13-s + (−0.262 + 1.25i)14-s + (1.09 + 0.541i)15-s + (−1.20 − 0.255i)16-s + (0.323 + 0.841i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.953 - 0.302i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.953 - 0.302i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $0.953 - 0.302i$
Analytic conductor: \(1.39738\)
Root analytic conductor: \(1.18210\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :1/2),\ 0.953 - 0.302i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.887350 + 0.137579i\)
\(L(\frac12)\) \(\approx\) \(0.887350 + 0.137579i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-2.03 + 0.932i)T \)
7 \( 1 + (-0.405 + 2.61i)T \)
good2 \( 1 + (1.80 + 0.0947i)T + (1.98 + 0.209i)T^{2} \)
3 \( 1 + (-1.32 - 1.64i)T + (-0.623 + 2.93i)T^{2} \)
11 \( 1 + (2.23 - 0.474i)T + (10.0 - 4.47i)T^{2} \)
13 \( 1 + (-4.21 - 2.14i)T + (7.64 + 10.5i)T^{2} \)
17 \( 1 + (-1.33 - 3.47i)T + (-12.6 + 11.3i)T^{2} \)
19 \( 1 + (0.216 + 2.05i)T + (-18.5 + 3.95i)T^{2} \)
23 \( 1 + (0.0829 - 1.58i)T + (-22.8 - 2.40i)T^{2} \)
29 \( 1 + (6.19 - 8.53i)T + (-8.96 - 27.5i)T^{2} \)
31 \( 1 + (-1.38 + 3.11i)T + (-20.7 - 23.0i)T^{2} \)
37 \( 1 + (1.80 - 1.17i)T + (15.0 - 33.8i)T^{2} \)
41 \( 1 + (4.99 - 1.62i)T + (33.1 - 24.0i)T^{2} \)
43 \( 1 + (6.27 + 6.27i)T + 43iT^{2} \)
47 \( 1 + (6.00 + 2.30i)T + (34.9 + 31.4i)T^{2} \)
53 \( 1 + (3.15 - 2.55i)T + (11.0 - 51.8i)T^{2} \)
59 \( 1 + (-8.50 + 9.44i)T + (-6.16 - 58.6i)T^{2} \)
61 \( 1 + (0.722 - 0.650i)T + (6.37 - 60.6i)T^{2} \)
67 \( 1 + (-9.57 + 3.67i)T + (49.7 - 44.8i)T^{2} \)
71 \( 1 + (1.86 + 1.35i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (4.27 - 6.58i)T + (-29.6 - 66.6i)T^{2} \)
79 \( 1 + (4.69 + 10.5i)T + (-52.8 + 58.7i)T^{2} \)
83 \( 1 + (0.909 - 5.73i)T + (-78.9 - 25.6i)T^{2} \)
89 \( 1 + (4.47 + 4.96i)T + (-9.30 + 88.5i)T^{2} \)
97 \( 1 + (-0.453 - 2.86i)T + (-92.2 + 29.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.07814255627351701961453353091, −11.11053263854284980874143142846, −10.33917675888792270995233323508, −9.733507759151260286057643259769, −8.841236619389063351066438995784, −8.193997597528185509004617275988, −6.78843173216019079219414179524, −4.99750786637677396197013132397, −3.69830820686217174089275104814, −1.61965023190202143339984723878, 1.65520564261159025494348415708, 2.80935563889523435262909064245, 5.49438649011679169972901056546, 6.71847062583564697538434948589, 7.931183046560204477808784710717, 8.452912396832560734833371872007, 9.454986886006782610416006463353, 10.36012307199290581393189061146, 11.45803625846814305770474350609, 12.98898226359515477803640489384

Graph of the $Z$-function along the critical line