L(s) = 1 | + (−1.22 − 0.0642i)2-s + (0.158 + 0.195i)3-s + (−0.490 − 0.0515i)4-s + (−2.14 + 0.624i)5-s + (−0.181 − 0.249i)6-s + (2.13 − 1.56i)7-s + (3.02 + 0.478i)8-s + (0.610 − 2.87i)9-s + (2.67 − 0.627i)10-s + (6.21 − 1.32i)11-s + (−0.0675 − 0.104i)12-s + (−3.08 − 1.57i)13-s + (−2.71 + 1.77i)14-s + (−0.462 − 0.321i)15-s + (−2.71 − 0.576i)16-s + (1.38 + 3.61i)17-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.0454i)2-s + (0.0914 + 0.112i)3-s + (−0.245 − 0.0257i)4-s + (−0.960 + 0.279i)5-s + (−0.0741 − 0.102i)6-s + (0.806 − 0.590i)7-s + (1.06 + 0.169i)8-s + (0.203 − 0.957i)9-s + (0.845 − 0.198i)10-s + (1.87 − 0.398i)11-s + (−0.0195 − 0.0300i)12-s + (−0.856 − 0.436i)13-s + (−0.726 + 0.475i)14-s + (−0.119 − 0.0828i)15-s + (−0.677 − 0.144i)16-s + (0.336 + 0.875i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.716+0.697i)Λ(2−s)
Λ(s)=(=(175s/2ΓC(s+1/2)L(s)(0.716+0.697i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.716+0.697i
|
Analytic conductor: |
1.39738 |
Root analytic conductor: |
1.18210 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :1/2), 0.716+0.697i)
|
Particular Values
L(1) |
≈ |
0.623413−0.253186i |
L(21) |
≈ |
0.623413−0.253186i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(2.14−0.624i)T |
| 7 | 1+(−2.13+1.56i)T |
good | 2 | 1+(1.22+0.0642i)T+(1.98+0.209i)T2 |
| 3 | 1+(−0.158−0.195i)T+(−0.623+2.93i)T2 |
| 11 | 1+(−6.21+1.32i)T+(10.0−4.47i)T2 |
| 13 | 1+(3.08+1.57i)T+(7.64+10.5i)T2 |
| 17 | 1+(−1.38−3.61i)T+(−12.6+11.3i)T2 |
| 19 | 1+(0.630+6.00i)T+(−18.5+3.95i)T2 |
| 23 | 1+(0.0931−1.77i)T+(−22.8−2.40i)T2 |
| 29 | 1+(−1.19+1.63i)T+(−8.96−27.5i)T2 |
| 31 | 1+(−0.613+1.37i)T+(−20.7−23.0i)T2 |
| 37 | 1+(6.46−4.19i)T+(15.0−33.8i)T2 |
| 41 | 1+(−2.44+0.795i)T+(33.1−24.0i)T2 |
| 43 | 1+(−4.23−4.23i)T+43iT2 |
| 47 | 1+(2.45+0.941i)T+(34.9+31.4i)T2 |
| 53 | 1+(−2.37+1.91i)T+(11.0−51.8i)T2 |
| 59 | 1+(8.64−9.59i)T+(−6.16−58.6i)T2 |
| 61 | 1+(0.0639−0.0575i)T+(6.37−60.6i)T2 |
| 67 | 1+(1.23−0.475i)T+(49.7−44.8i)T2 |
| 71 | 1+(−1.14−0.833i)T+(21.9+67.5i)T2 |
| 73 | 1+(−7.23+11.1i)T+(−29.6−66.6i)T2 |
| 79 | 1+(−1.79−4.03i)T+(−52.8+58.7i)T2 |
| 83 | 1+(−0.0358+0.226i)T+(−78.9−25.6i)T2 |
| 89 | 1+(−8.63−9.59i)T+(−9.30+88.5i)T2 |
| 97 | 1+(−0.0559−0.353i)T+(−92.2+29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.28018625301323317406708461383, −11.46229545911240961169533417458, −10.54775267805287994852209335954, −9.421270731277893155482004210324, −8.623531008189793896455749607390, −7.62446494634888174701025908356, −6.66729095789841649998106046342, −4.59604848344746306246005428209, −3.72126772053863369333731827380, −0.988986092425500048953726510190,
1.63845506802907923426566309168, 4.11782992855211580102522020655, 5.00874953678403521393653338676, 7.07924097901248467716583487478, 7.87485430651206341777300810742, 8.746331846680598457467746178273, 9.553148650646994500044868094296, 10.80305985826987898480929519419, 11.90945042496636084268823857501, 12.44475787895120183445323575712