L(s) = 1 | + (−2.77 − 0.145i)2-s + (0.835 + 1.03i)3-s + (5.68 + 0.597i)4-s + (0.745 + 2.10i)5-s + (−2.16 − 2.98i)6-s + (2.14 + 1.54i)7-s + (−10.2 − 1.61i)8-s + (0.257 − 1.21i)9-s + (−1.76 − 5.95i)10-s + (0.0303 − 0.00645i)11-s + (4.13 + 6.36i)12-s + (−2.44 − 1.24i)13-s + (−5.73 − 4.60i)14-s + (−1.55 + 2.52i)15-s + (16.9 + 3.59i)16-s + (1.52 + 3.97i)17-s + ⋯ |
L(s) = 1 | + (−1.96 − 0.102i)2-s + (0.482 + 0.595i)3-s + (2.84 + 0.298i)4-s + (0.333 + 0.942i)5-s + (−0.884 − 1.21i)6-s + (0.811 + 0.584i)7-s + (−3.61 − 0.571i)8-s + (0.0859 − 0.404i)9-s + (−0.557 − 1.88i)10-s + (0.00916 − 0.00194i)11-s + (1.19 + 1.83i)12-s + (−0.676 − 0.344i)13-s + (−1.53 − 1.23i)14-s + (−0.400 + 0.653i)15-s + (4.22 + 0.898i)16-s + (0.369 + 0.963i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.336−0.941i)Λ(2−s)
Λ(s)=(=(175s/2ΓC(s+1/2)L(s)(0.336−0.941i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.336−0.941i
|
Analytic conductor: |
1.39738 |
Root analytic conductor: |
1.18210 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :1/2), 0.336−0.941i)
|
Particular Values
L(1) |
≈ |
0.534813+0.376902i |
L(21) |
≈ |
0.534813+0.376902i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.745−2.10i)T |
| 7 | 1+(−2.14−1.54i)T |
good | 2 | 1+(2.77+0.145i)T+(1.98+0.209i)T2 |
| 3 | 1+(−0.835−1.03i)T+(−0.623+2.93i)T2 |
| 11 | 1+(−0.0303+0.00645i)T+(10.0−4.47i)T2 |
| 13 | 1+(2.44+1.24i)T+(7.64+10.5i)T2 |
| 17 | 1+(−1.52−3.97i)T+(−12.6+11.3i)T2 |
| 19 | 1+(−0.275−2.62i)T+(−18.5+3.95i)T2 |
| 23 | 1+(−0.103+1.97i)T+(−22.8−2.40i)T2 |
| 29 | 1+(−0.472+0.649i)T+(−8.96−27.5i)T2 |
| 31 | 1+(0.468−1.05i)T+(−20.7−23.0i)T2 |
| 37 | 1+(0.394−0.255i)T+(15.0−33.8i)T2 |
| 41 | 1+(3.35−1.08i)T+(33.1−24.0i)T2 |
| 43 | 1+(6.90+6.90i)T+43iT2 |
| 47 | 1+(−3.24−1.24i)T+(34.9+31.4i)T2 |
| 53 | 1+(−8.21+6.64i)T+(11.0−51.8i)T2 |
| 59 | 1+(1.58−1.76i)T+(−6.16−58.6i)T2 |
| 61 | 1+(−0.651+0.586i)T+(6.37−60.6i)T2 |
| 67 | 1+(−9.68+3.71i)T+(49.7−44.8i)T2 |
| 71 | 1+(2.26+1.64i)T+(21.9+67.5i)T2 |
| 73 | 1+(3.90−6.01i)T+(−29.6−66.6i)T2 |
| 79 | 1+(4.45+10.0i)T+(−52.8+58.7i)T2 |
| 83 | 1+(−2.29+14.4i)T+(−78.9−25.6i)T2 |
| 89 | 1+(3.12+3.47i)T+(−9.30+88.5i)T2 |
| 97 | 1+(0.0409+0.258i)T+(−92.2+29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.33446291272637355374742878264, −11.50478799019058739050846016853, −10.34513937777781560078366294062, −10.03898966374833192484844474056, −8.894122801912340820023780169833, −8.148345980217556698073065735780, −7.07050655643058493717124402762, −5.90609638434582329155024536074, −3.27287572252093809388562587666, −1.99979752727351560993746114426,
1.16776903696735866588507916619, 2.35104441945601269227298936720, 5.17496070417930013042731893805, 6.93373545533882730342917641387, 7.66170093115102767857877659012, 8.422125800463690273469651827465, 9.319920967855653799180555994500, 10.19126641225114426706819427904, 11.31836680666294505633080160934, 12.15316120756119363412196105777