L(s) = 1 | − 28·2-s + 116·3-s + 272·4-s − 3.24e3·6-s − 2.40e3·7-s + 6.72e3·8-s − 6.22e3·9-s − 2.55e4·11-s + 3.15e4·12-s + 4.23e4·13-s + 6.72e4·14-s − 3.27e5·16-s + 5.26e5·17-s + 1.74e5·18-s − 3.50e5·19-s − 2.78e5·21-s + 7.15e5·22-s + 6.21e5·23-s + 7.79e5·24-s − 1.18e6·26-s − 3.00e6·27-s − 6.53e5·28-s + 6.72e6·29-s − 6.41e6·31-s + 5.72e6·32-s − 2.96e6·33-s − 1.47e7·34-s + ⋯ |
L(s) = 1 | − 1.23·2-s + 0.826·3-s + 0.531·4-s − 1.02·6-s − 0.377·7-s + 0.580·8-s − 0.316·9-s − 0.526·11-s + 0.439·12-s + 0.410·13-s + 0.467·14-s − 1.24·16-s + 1.52·17-s + 0.391·18-s − 0.616·19-s − 0.312·21-s + 0.651·22-s + 0.463·23-s + 0.479·24-s − 0.508·26-s − 1.08·27-s − 0.200·28-s + 1.76·29-s − 1.24·31-s + 0.965·32-s − 0.435·33-s − 1.89·34-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)−Λ(10−s)
Λ(s)=(=(175s/2ΓC(s+9/2)L(s)−Λ(1−s)
Particular Values
L(5) |
= |
0 |
L(21) |
= |
0 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1+p4T |
good | 2 | 1+7p2T+p9T2 |
| 3 | 1−116T+p9T2 |
| 11 | 1+25548T+p9T2 |
| 13 | 1−42306T+p9T2 |
| 17 | 1−526342T+p9T2 |
| 19 | 1+350060T+p9T2 |
| 23 | 1−621976T+p9T2 |
| 29 | 1−6720430T+p9T2 |
| 31 | 1+6412208T+p9T2 |
| 37 | 1−2317682T+p9T2 |
| 41 | 1+10224678T+p9T2 |
| 43 | 1+30114004T+p9T2 |
| 47 | 1−23644912T+p9T2 |
| 53 | 1+57292654T+p9T2 |
| 59 | 1−84934780T+p9T2 |
| 61 | 1−14677822T+p9T2 |
| 67 | 1−244557812T+p9T2 |
| 71 | 1−61901952T+p9T2 |
| 73 | 1−283763726T+p9T2 |
| 79 | 1−276107480T+p9T2 |
| 83 | 1−72995956T+p9T2 |
| 89 | 1+896368470T+p9T2 |
| 97 | 1+1205809578T+p9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.19112103600048002666938633816, −9.435712170282542004710924262217, −8.439744059232341352264003846412, −7.977719110662855327091087384402, −6.76732199824049326380432917954, −5.27286289517867541834394924791, −3.63840962846763431560313798285, −2.52153495373356647184053484745, −1.21349497488542371736328244652, 0,
1.21349497488542371736328244652, 2.52153495373356647184053484745, 3.63840962846763431560313798285, 5.27286289517867541834394924791, 6.76732199824049326380432917954, 7.977719110662855327091087384402, 8.439744059232341352264003846412, 9.435712170282542004710924262217, 10.19112103600048002666938633816