Properties

Label 2-175-1.1-c9-0-59
Degree $2$
Conductor $175$
Sign $-1$
Analytic cond. $90.1312$
Root an. cond. $9.49374$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 28·2-s + 116·3-s + 272·4-s − 3.24e3·6-s − 2.40e3·7-s + 6.72e3·8-s − 6.22e3·9-s − 2.55e4·11-s + 3.15e4·12-s + 4.23e4·13-s + 6.72e4·14-s − 3.27e5·16-s + 5.26e5·17-s + 1.74e5·18-s − 3.50e5·19-s − 2.78e5·21-s + 7.15e5·22-s + 6.21e5·23-s + 7.79e5·24-s − 1.18e6·26-s − 3.00e6·27-s − 6.53e5·28-s + 6.72e6·29-s − 6.41e6·31-s + 5.72e6·32-s − 2.96e6·33-s − 1.47e7·34-s + ⋯
L(s)  = 1  − 1.23·2-s + 0.826·3-s + 0.531·4-s − 1.02·6-s − 0.377·7-s + 0.580·8-s − 0.316·9-s − 0.526·11-s + 0.439·12-s + 0.410·13-s + 0.467·14-s − 1.24·16-s + 1.52·17-s + 0.391·18-s − 0.616·19-s − 0.312·21-s + 0.651·22-s + 0.463·23-s + 0.479·24-s − 0.508·26-s − 1.08·27-s − 0.200·28-s + 1.76·29-s − 1.24·31-s + 0.965·32-s − 0.435·33-s − 1.89·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(90.1312\)
Root analytic conductor: \(9.49374\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 175,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 + p^{4} T \)
good2 \( 1 + 7 p^{2} T + p^{9} T^{2} \)
3 \( 1 - 116 T + p^{9} T^{2} \)
11 \( 1 + 25548 T + p^{9} T^{2} \)
13 \( 1 - 42306 T + p^{9} T^{2} \)
17 \( 1 - 526342 T + p^{9} T^{2} \)
19 \( 1 + 350060 T + p^{9} T^{2} \)
23 \( 1 - 621976 T + p^{9} T^{2} \)
29 \( 1 - 6720430 T + p^{9} T^{2} \)
31 \( 1 + 6412208 T + p^{9} T^{2} \)
37 \( 1 - 2317682 T + p^{9} T^{2} \)
41 \( 1 + 10224678 T + p^{9} T^{2} \)
43 \( 1 + 30114004 T + p^{9} T^{2} \)
47 \( 1 - 23644912 T + p^{9} T^{2} \)
53 \( 1 + 57292654 T + p^{9} T^{2} \)
59 \( 1 - 84934780 T + p^{9} T^{2} \)
61 \( 1 - 14677822 T + p^{9} T^{2} \)
67 \( 1 - 244557812 T + p^{9} T^{2} \)
71 \( 1 - 61901952 T + p^{9} T^{2} \)
73 \( 1 - 283763726 T + p^{9} T^{2} \)
79 \( 1 - 276107480 T + p^{9} T^{2} \)
83 \( 1 - 72995956 T + p^{9} T^{2} \)
89 \( 1 + 896368470 T + p^{9} T^{2} \)
97 \( 1 + 1205809578 T + p^{9} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.19112103600048002666938633816, −9.435712170282542004710924262217, −8.439744059232341352264003846412, −7.977719110662855327091087384402, −6.76732199824049326380432917954, −5.27286289517867541834394924791, −3.63840962846763431560313798285, −2.52153495373356647184053484745, −1.21349497488542371736328244652, 0, 1.21349497488542371736328244652, 2.52153495373356647184053484745, 3.63840962846763431560313798285, 5.27286289517867541834394924791, 6.76732199824049326380432917954, 7.977719110662855327091087384402, 8.439744059232341352264003846412, 9.435712170282542004710924262217, 10.19112103600048002666938633816

Graph of the $Z$-function along the critical line