L(s) = 1 | + 8·2-s − 3-s + 32·4-s − 8·6-s − 49·7-s − 242·9-s − 453·11-s − 32·12-s + 969·13-s − 392·14-s − 1.02e3·16-s − 1.63e3·17-s − 1.93e3·18-s − 1.55e3·19-s + 49·21-s − 3.62e3·22-s + 1.65e3·23-s + 7.75e3·26-s + 485·27-s − 1.56e3·28-s − 4.98e3·29-s + 1.19e3·31-s − 8.19e3·32-s + 453·33-s − 1.30e4·34-s − 7.74e3·36-s + 1.10e4·37-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 0.0641·3-s + 4-s − 0.0907·6-s − 0.377·7-s − 0.995·9-s − 1.12·11-s − 0.0641·12-s + 1.59·13-s − 0.534·14-s − 16-s − 1.37·17-s − 1.40·18-s − 0.985·19-s + 0.0242·21-s − 1.59·22-s + 0.651·23-s + 2.24·26-s + 0.128·27-s − 0.377·28-s − 1.10·29-s + 0.222·31-s − 1.41·32-s + 0.0724·33-s − 1.94·34-s − 0.995·36-s + 1.32·37-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(175s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1+p2T |
good | 2 | 1−p3T+p5T2 |
| 3 | 1+T+p5T2 |
| 11 | 1+453T+p5T2 |
| 13 | 1−969T+p5T2 |
| 17 | 1+1637T+p5T2 |
| 19 | 1+1550T+p5T2 |
| 23 | 1−1654T+p5T2 |
| 29 | 1+4985T+p5T2 |
| 31 | 1−1192T+p5T2 |
| 37 | 1−11018T+p5T2 |
| 41 | 1+1728T+p5T2 |
| 43 | 1−10814T+p5T2 |
| 47 | 1+26237T+p5T2 |
| 53 | 1+25936T+p5T2 |
| 59 | 1+4580T+p5T2 |
| 61 | 1+12488T+p5T2 |
| 67 | 1−15848T+p5T2 |
| 71 | 1−51792T+p5T2 |
| 73 | 1+4846T+p5T2 |
| 79 | 1−62765T+p5T2 |
| 83 | 1−23644T+p5T2 |
| 89 | 1+147300T+p5T2 |
| 97 | 1−8343T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.22762224041800675228809909735, −10.99828358343528042887008179455, −9.181167874331142193605915376323, −8.222676307777630185099448288939, −6.52213151916737151304308337614, −5.86413198511598903494692240517, −4.71444307656059463435381149648, −3.50399969940603835112510009698, −2.42266345016135568338486268314, 0,
2.42266345016135568338486268314, 3.50399969940603835112510009698, 4.71444307656059463435381149648, 5.86413198511598903494692240517, 6.52213151916737151304308337614, 8.222676307777630185099448288939, 9.181167874331142193605915376323, 10.99828358343528042887008179455, 11.22762224041800675228809909735