Properties

Label 2-175-1.1-c5-0-45
Degree $2$
Conductor $175$
Sign $-1$
Analytic cond. $28.0671$
Root an. cond. $5.29784$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s − 3-s + 32·4-s − 8·6-s − 49·7-s − 242·9-s − 453·11-s − 32·12-s + 969·13-s − 392·14-s − 1.02e3·16-s − 1.63e3·17-s − 1.93e3·18-s − 1.55e3·19-s + 49·21-s − 3.62e3·22-s + 1.65e3·23-s + 7.75e3·26-s + 485·27-s − 1.56e3·28-s − 4.98e3·29-s + 1.19e3·31-s − 8.19e3·32-s + 453·33-s − 1.30e4·34-s − 7.74e3·36-s + 1.10e4·37-s + ⋯
L(s)  = 1  + 1.41·2-s − 0.0641·3-s + 4-s − 0.0907·6-s − 0.377·7-s − 0.995·9-s − 1.12·11-s − 0.0641·12-s + 1.59·13-s − 0.534·14-s − 16-s − 1.37·17-s − 1.40·18-s − 0.985·19-s + 0.0242·21-s − 1.59·22-s + 0.651·23-s + 2.24·26-s + 0.128·27-s − 0.377·28-s − 1.10·29-s + 0.222·31-s − 1.41·32-s + 0.0724·33-s − 1.94·34-s − 0.995·36-s + 1.32·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(28.0671\)
Root analytic conductor: \(5.29784\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 175,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 + p^{2} T \)
good2 \( 1 - p^{3} T + p^{5} T^{2} \)
3 \( 1 + T + p^{5} T^{2} \)
11 \( 1 + 453 T + p^{5} T^{2} \)
13 \( 1 - 969 T + p^{5} T^{2} \)
17 \( 1 + 1637 T + p^{5} T^{2} \)
19 \( 1 + 1550 T + p^{5} T^{2} \)
23 \( 1 - 1654 T + p^{5} T^{2} \)
29 \( 1 + 4985 T + p^{5} T^{2} \)
31 \( 1 - 1192 T + p^{5} T^{2} \)
37 \( 1 - 11018 T + p^{5} T^{2} \)
41 \( 1 + 1728 T + p^{5} T^{2} \)
43 \( 1 - 10814 T + p^{5} T^{2} \)
47 \( 1 + 26237 T + p^{5} T^{2} \)
53 \( 1 + 25936 T + p^{5} T^{2} \)
59 \( 1 + 4580 T + p^{5} T^{2} \)
61 \( 1 + 12488 T + p^{5} T^{2} \)
67 \( 1 - 15848 T + p^{5} T^{2} \)
71 \( 1 - 51792 T + p^{5} T^{2} \)
73 \( 1 + 4846 T + p^{5} T^{2} \)
79 \( 1 - 62765 T + p^{5} T^{2} \)
83 \( 1 - 23644 T + p^{5} T^{2} \)
89 \( 1 + 147300 T + p^{5} T^{2} \)
97 \( 1 - 8343 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.22762224041800675228809909735, −10.99828358343528042887008179455, −9.181167874331142193605915376323, −8.222676307777630185099448288939, −6.52213151916737151304308337614, −5.86413198511598903494692240517, −4.71444307656059463435381149648, −3.50399969940603835112510009698, −2.42266345016135568338486268314, 0, 2.42266345016135568338486268314, 3.50399969940603835112510009698, 4.71444307656059463435381149648, 5.86413198511598903494692240517, 6.52213151916737151304308337614, 8.222676307777630185099448288939, 9.181167874331142193605915376323, 10.99828358343528042887008179455, 11.22762224041800675228809909735

Graph of the $Z$-function along the critical line