L(s) = 1 | + 8·2-s − 3-s + 32·4-s − 8·6-s − 49·7-s − 242·9-s − 453·11-s − 32·12-s + 969·13-s − 392·14-s − 1.02e3·16-s − 1.63e3·17-s − 1.93e3·18-s − 1.55e3·19-s + 49·21-s − 3.62e3·22-s + 1.65e3·23-s + 7.75e3·26-s + 485·27-s − 1.56e3·28-s − 4.98e3·29-s + 1.19e3·31-s − 8.19e3·32-s + 453·33-s − 1.30e4·34-s − 7.74e3·36-s + 1.10e4·37-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 0.0641·3-s + 4-s − 0.0907·6-s − 0.377·7-s − 0.995·9-s − 1.12·11-s − 0.0641·12-s + 1.59·13-s − 0.534·14-s − 16-s − 1.37·17-s − 1.40·18-s − 0.985·19-s + 0.0242·21-s − 1.59·22-s + 0.651·23-s + 2.24·26-s + 0.128·27-s − 0.377·28-s − 1.10·29-s + 0.222·31-s − 1.41·32-s + 0.0724·33-s − 1.94·34-s − 0.995·36-s + 1.32·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 + p^{2} T \) |
good | 2 | \( 1 - p^{3} T + p^{5} T^{2} \) |
| 3 | \( 1 + T + p^{5} T^{2} \) |
| 11 | \( 1 + 453 T + p^{5} T^{2} \) |
| 13 | \( 1 - 969 T + p^{5} T^{2} \) |
| 17 | \( 1 + 1637 T + p^{5} T^{2} \) |
| 19 | \( 1 + 1550 T + p^{5} T^{2} \) |
| 23 | \( 1 - 1654 T + p^{5} T^{2} \) |
| 29 | \( 1 + 4985 T + p^{5} T^{2} \) |
| 31 | \( 1 - 1192 T + p^{5} T^{2} \) |
| 37 | \( 1 - 11018 T + p^{5} T^{2} \) |
| 41 | \( 1 + 1728 T + p^{5} T^{2} \) |
| 43 | \( 1 - 10814 T + p^{5} T^{2} \) |
| 47 | \( 1 + 26237 T + p^{5} T^{2} \) |
| 53 | \( 1 + 25936 T + p^{5} T^{2} \) |
| 59 | \( 1 + 4580 T + p^{5} T^{2} \) |
| 61 | \( 1 + 12488 T + p^{5} T^{2} \) |
| 67 | \( 1 - 15848 T + p^{5} T^{2} \) |
| 71 | \( 1 - 51792 T + p^{5} T^{2} \) |
| 73 | \( 1 + 4846 T + p^{5} T^{2} \) |
| 79 | \( 1 - 62765 T + p^{5} T^{2} \) |
| 83 | \( 1 - 23644 T + p^{5} T^{2} \) |
| 89 | \( 1 + 147300 T + p^{5} T^{2} \) |
| 97 | \( 1 - 8343 T + p^{5} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.22762224041800675228809909735, −10.99828358343528042887008179455, −9.181167874331142193605915376323, −8.222676307777630185099448288939, −6.52213151916737151304308337614, −5.86413198511598903494692240517, −4.71444307656059463435381149648, −3.50399969940603835112510009698, −2.42266345016135568338486268314, 0,
2.42266345016135568338486268314, 3.50399969940603835112510009698, 4.71444307656059463435381149648, 5.86413198511598903494692240517, 6.52213151916737151304308337614, 8.222676307777630185099448288939, 9.181167874331142193605915376323, 10.99828358343528042887008179455, 11.22762224041800675228809909735