L(s) = 1 | + 10·2-s + 14·3-s + 68·4-s + 140·6-s + 49·7-s + 360·8-s − 47·9-s + 232·11-s + 952·12-s + 140·13-s + 490·14-s + 1.42e3·16-s + 1.72e3·17-s − 470·18-s − 98·19-s + 686·21-s + 2.32e3·22-s − 1.82e3·23-s + 5.04e3·24-s + 1.40e3·26-s − 4.06e3·27-s + 3.33e3·28-s + 3.41e3·29-s − 7.64e3·31-s + 2.72e3·32-s + 3.24e3·33-s + 1.72e4·34-s + ⋯ |
L(s) = 1 | + 1.76·2-s + 0.898·3-s + 17/8·4-s + 1.58·6-s + 0.377·7-s + 1.98·8-s − 0.193·9-s + 0.578·11-s + 1.90·12-s + 0.229·13-s + 0.668·14-s + 1.39·16-s + 1.44·17-s − 0.341·18-s − 0.0622·19-s + 0.339·21-s + 1.02·22-s − 0.718·23-s + 1.78·24-s + 0.406·26-s − 1.07·27-s + 0.803·28-s + 0.754·29-s − 1.42·31-s + 0.469·32-s + 0.519·33-s + 2.55·34-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(175s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
7.861741925 |
L(21) |
≈ |
7.861741925 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1−p2T |
good | 2 | 1−5pT+p5T2 |
| 3 | 1−14T+p5T2 |
| 11 | 1−232T+p5T2 |
| 13 | 1−140T+p5T2 |
| 17 | 1−1722T+p5T2 |
| 19 | 1+98T+p5T2 |
| 23 | 1+1824T+p5T2 |
| 29 | 1−3418T+p5T2 |
| 31 | 1+7644T+p5T2 |
| 37 | 1−10398T+p5T2 |
| 41 | 1+17962T+p5T2 |
| 43 | 1+10880T+p5T2 |
| 47 | 1+9324T+p5T2 |
| 53 | 1+2262T+p5T2 |
| 59 | 1+2730T+p5T2 |
| 61 | 1−25648T+p5T2 |
| 67 | 1−48404T+p5T2 |
| 71 | 1+58560T+p5T2 |
| 73 | 1+68082T+p5T2 |
| 79 | 1−31784T+p5T2 |
| 83 | 1−20538T+p5T2 |
| 89 | 1+50582T+p5T2 |
| 97 | 1−58506T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.00612503520481003014390500628, −11.34705271128151429025700355692, −9.959815623940900851218828111402, −8.539979483506156752982280547873, −7.48808886275778372411031332056, −6.20397807893814053100474613341, −5.19817163096014321019995727184, −3.88553469698264429985104906666, −3.09069771676693723400149567648, −1.77211365157158500631676652077,
1.77211365157158500631676652077, 3.09069771676693723400149567648, 3.88553469698264429985104906666, 5.19817163096014321019995727184, 6.20397807893814053100474613341, 7.48808886275778372411031332056, 8.539979483506156752982280547873, 9.959815623940900851218828111402, 11.34705271128151429025700355692, 12.00612503520481003014390500628