Properties

Label 2-175-1.1-c5-0-33
Degree $2$
Conductor $175$
Sign $1$
Analytic cond. $28.0671$
Root an. cond. $5.29784$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10·2-s + 14·3-s + 68·4-s + 140·6-s + 49·7-s + 360·8-s − 47·9-s + 232·11-s + 952·12-s + 140·13-s + 490·14-s + 1.42e3·16-s + 1.72e3·17-s − 470·18-s − 98·19-s + 686·21-s + 2.32e3·22-s − 1.82e3·23-s + 5.04e3·24-s + 1.40e3·26-s − 4.06e3·27-s + 3.33e3·28-s + 3.41e3·29-s − 7.64e3·31-s + 2.72e3·32-s + 3.24e3·33-s + 1.72e4·34-s + ⋯
L(s)  = 1  + 1.76·2-s + 0.898·3-s + 17/8·4-s + 1.58·6-s + 0.377·7-s + 1.98·8-s − 0.193·9-s + 0.578·11-s + 1.90·12-s + 0.229·13-s + 0.668·14-s + 1.39·16-s + 1.44·17-s − 0.341·18-s − 0.0622·19-s + 0.339·21-s + 1.02·22-s − 0.718·23-s + 1.78·24-s + 0.406·26-s − 1.07·27-s + 0.803·28-s + 0.754·29-s − 1.42·31-s + 0.469·32-s + 0.519·33-s + 2.55·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(28.0671\)
Root analytic conductor: \(5.29784\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(7.861741925\)
\(L(\frac12)\) \(\approx\) \(7.861741925\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 - p^{2} T \)
good2 \( 1 - 5 p T + p^{5} T^{2} \)
3 \( 1 - 14 T + p^{5} T^{2} \)
11 \( 1 - 232 T + p^{5} T^{2} \)
13 \( 1 - 140 T + p^{5} T^{2} \)
17 \( 1 - 1722 T + p^{5} T^{2} \)
19 \( 1 + 98 T + p^{5} T^{2} \)
23 \( 1 + 1824 T + p^{5} T^{2} \)
29 \( 1 - 3418 T + p^{5} T^{2} \)
31 \( 1 + 7644 T + p^{5} T^{2} \)
37 \( 1 - 10398 T + p^{5} T^{2} \)
41 \( 1 + 17962 T + p^{5} T^{2} \)
43 \( 1 + 10880 T + p^{5} T^{2} \)
47 \( 1 + 9324 T + p^{5} T^{2} \)
53 \( 1 + 2262 T + p^{5} T^{2} \)
59 \( 1 + 2730 T + p^{5} T^{2} \)
61 \( 1 - 25648 T + p^{5} T^{2} \)
67 \( 1 - 48404 T + p^{5} T^{2} \)
71 \( 1 + 58560 T + p^{5} T^{2} \)
73 \( 1 + 68082 T + p^{5} T^{2} \)
79 \( 1 - 31784 T + p^{5} T^{2} \)
83 \( 1 - 20538 T + p^{5} T^{2} \)
89 \( 1 + 50582 T + p^{5} T^{2} \)
97 \( 1 - 58506 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.00612503520481003014390500628, −11.34705271128151429025700355692, −9.959815623940900851218828111402, −8.539979483506156752982280547873, −7.48808886275778372411031332056, −6.20397807893814053100474613341, −5.19817163096014321019995727184, −3.88553469698264429985104906666, −3.09069771676693723400149567648, −1.77211365157158500631676652077, 1.77211365157158500631676652077, 3.09069771676693723400149567648, 3.88553469698264429985104906666, 5.19817163096014321019995727184, 6.20397807893814053100474613341, 7.48808886275778372411031332056, 8.539979483506156752982280547873, 9.959815623940900851218828111402, 11.34705271128151429025700355692, 12.00612503520481003014390500628

Graph of the $Z$-function along the critical line