L(s) = 1 | − 2.85·2-s − 8.98·3-s + 0.149·4-s + 25.6·6-s − 7·7-s + 22.4·8-s + 53.7·9-s + 37.4·11-s − 1.34·12-s − 3.96·13-s + 19.9·14-s − 65.1·16-s − 51.6·17-s − 153.·18-s + 25.9·19-s + 62.9·21-s − 106.·22-s + 173.·23-s − 201.·24-s + 11.3·26-s − 240.·27-s − 1.04·28-s − 245.·29-s − 172.·31-s + 6.76·32-s − 336.·33-s + 147.·34-s + ⋯ |
L(s) = 1 | − 1.00·2-s − 1.72·3-s + 0.0186·4-s + 1.74·6-s − 0.377·7-s + 0.990·8-s + 1.99·9-s + 1.02·11-s − 0.0323·12-s − 0.0845·13-s + 0.381·14-s − 1.01·16-s − 0.737·17-s − 2.01·18-s + 0.313·19-s + 0.653·21-s − 1.03·22-s + 1.57·23-s − 1.71·24-s + 0.0853·26-s − 1.71·27-s − 0.00706·28-s − 1.57·29-s − 0.996·31-s + 0.0373·32-s − 1.77·33-s + 0.744·34-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1+7T |
good | 2 | 1+2.85T+8T2 |
| 3 | 1+8.98T+27T2 |
| 11 | 1−37.4T+1.33e3T2 |
| 13 | 1+3.96T+2.19e3T2 |
| 17 | 1+51.6T+4.91e3T2 |
| 19 | 1−25.9T+6.85e3T2 |
| 23 | 1−173.T+1.21e4T2 |
| 29 | 1+245.T+2.43e4T2 |
| 31 | 1+172.T+2.97e4T2 |
| 37 | 1−250.T+5.06e4T2 |
| 41 | 1+48.8T+6.89e4T2 |
| 43 | 1−143.T+7.95e4T2 |
| 47 | 1−36.6T+1.03e5T2 |
| 53 | 1+645.T+1.48e5T2 |
| 59 | 1−395.T+2.05e5T2 |
| 61 | 1−47.5T+2.26e5T2 |
| 67 | 1+263.T+3.00e5T2 |
| 71 | 1+268.T+3.57e5T2 |
| 73 | 1+199.T+3.89e5T2 |
| 79 | 1−473.T+4.93e5T2 |
| 83 | 1−72.7T+5.71e5T2 |
| 89 | 1+1.55e3T+7.04e5T2 |
| 97 | 1+243.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.28125826546917506493350277611, −10.96292159390626253631918404149, −9.701227383616021124175985670372, −9.060989595166397437626538911249, −7.39485695139970196937838556210, −6.58638271756813465217255796422, −5.35691336083601992329138299271, −4.18486505924493661207891435071, −1.28562818361079764931972099703, 0,
1.28562818361079764931972099703, 4.18486505924493661207891435071, 5.35691336083601992329138299271, 6.58638271756813465217255796422, 7.39485695139970196937838556210, 9.060989595166397437626538911249, 9.701227383616021124175985670372, 10.96292159390626253631918404149, 11.28125826546917506493350277611