Properties

Label 2-175-1.1-c3-0-5
Degree $2$
Conductor $175$
Sign $1$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.504·2-s − 4.26·3-s − 7.74·4-s − 2.15·6-s − 7·7-s − 7.94·8-s − 8.82·9-s + 54.8·11-s + 33.0·12-s − 16.0·13-s − 3.53·14-s + 57.9·16-s + 0.422·17-s − 4.45·18-s + 127.·19-s + 29.8·21-s + 27.7·22-s − 51.1·23-s + 33.8·24-s − 8.08·26-s + 152.·27-s + 54.2·28-s + 41.4·29-s + 192.·31-s + 92.8·32-s − 233.·33-s + 0.213·34-s + ⋯
L(s)  = 1  + 0.178·2-s − 0.820·3-s − 0.968·4-s − 0.146·6-s − 0.377·7-s − 0.351·8-s − 0.326·9-s + 1.50·11-s + 0.794·12-s − 0.341·13-s − 0.0674·14-s + 0.905·16-s + 0.00602·17-s − 0.0583·18-s + 1.53·19-s + 0.310·21-s + 0.268·22-s − 0.463·23-s + 0.288·24-s − 0.0609·26-s + 1.08·27-s + 0.365·28-s + 0.265·29-s + 1.11·31-s + 0.512·32-s − 1.23·33-s + 0.00107·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.9789007094\)
\(L(\frac12)\) \(\approx\) \(0.9789007094\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 + 7T \)
good2 \( 1 - 0.504T + 8T^{2} \)
3 \( 1 + 4.26T + 27T^{2} \)
11 \( 1 - 54.8T + 1.33e3T^{2} \)
13 \( 1 + 16.0T + 2.19e3T^{2} \)
17 \( 1 - 0.422T + 4.91e3T^{2} \)
19 \( 1 - 127.T + 6.85e3T^{2} \)
23 \( 1 + 51.1T + 1.21e4T^{2} \)
29 \( 1 - 41.4T + 2.43e4T^{2} \)
31 \( 1 - 192.T + 2.97e4T^{2} \)
37 \( 1 - 189.T + 5.06e4T^{2} \)
41 \( 1 + 76.3T + 6.89e4T^{2} \)
43 \( 1 + 294.T + 7.95e4T^{2} \)
47 \( 1 + 540.T + 1.03e5T^{2} \)
53 \( 1 - 661.T + 1.48e5T^{2} \)
59 \( 1 - 410.T + 2.05e5T^{2} \)
61 \( 1 - 46.0T + 2.26e5T^{2} \)
67 \( 1 + 10.4T + 3.00e5T^{2} \)
71 \( 1 + 491.T + 3.57e5T^{2} \)
73 \( 1 - 814.T + 3.89e5T^{2} \)
79 \( 1 + 858.T + 4.93e5T^{2} \)
83 \( 1 - 1.05e3T + 5.71e5T^{2} \)
89 \( 1 - 341.T + 7.04e5T^{2} \)
97 \( 1 - 1.41e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.94407056366102801462090596588, −11.72068875396477307731707721648, −10.10584177281600404172853271759, −9.370374024224624385363332349352, −8.289592867360317828739872464393, −6.73154344767138228439247298320, −5.73767964529781460104708135065, −4.67579796851340841731909011122, −3.38116872597316928849224752835, −0.810811962771265949365583456405, 0.810811962771265949365583456405, 3.38116872597316928849224752835, 4.67579796851340841731909011122, 5.73767964529781460104708135065, 6.73154344767138228439247298320, 8.289592867360317828739872464393, 9.370374024224624385363332349352, 10.10584177281600404172853271759, 11.72068875396477307731707721648, 11.94407056366102801462090596588

Graph of the $Z$-function along the critical line