L(s) = 1 | + 0.504·2-s − 4.26·3-s − 7.74·4-s − 2.15·6-s − 7·7-s − 7.94·8-s − 8.82·9-s + 54.8·11-s + 33.0·12-s − 16.0·13-s − 3.53·14-s + 57.9·16-s + 0.422·17-s − 4.45·18-s + 127.·19-s + 29.8·21-s + 27.7·22-s − 51.1·23-s + 33.8·24-s − 8.08·26-s + 152.·27-s + 54.2·28-s + 41.4·29-s + 192.·31-s + 92.8·32-s − 233.·33-s + 0.213·34-s + ⋯ |
L(s) = 1 | + 0.178·2-s − 0.820·3-s − 0.968·4-s − 0.146·6-s − 0.377·7-s − 0.351·8-s − 0.326·9-s + 1.50·11-s + 0.794·12-s − 0.341·13-s − 0.0674·14-s + 0.905·16-s + 0.00602·17-s − 0.0583·18-s + 1.53·19-s + 0.310·21-s + 0.268·22-s − 0.463·23-s + 0.288·24-s − 0.0609·26-s + 1.08·27-s + 0.365·28-s + 0.265·29-s + 1.11·31-s + 0.512·32-s − 1.23·33-s + 0.00107·34-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.9789007094 |
L(21) |
≈ |
0.9789007094 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1+7T |
good | 2 | 1−0.504T+8T2 |
| 3 | 1+4.26T+27T2 |
| 11 | 1−54.8T+1.33e3T2 |
| 13 | 1+16.0T+2.19e3T2 |
| 17 | 1−0.422T+4.91e3T2 |
| 19 | 1−127.T+6.85e3T2 |
| 23 | 1+51.1T+1.21e4T2 |
| 29 | 1−41.4T+2.43e4T2 |
| 31 | 1−192.T+2.97e4T2 |
| 37 | 1−189.T+5.06e4T2 |
| 41 | 1+76.3T+6.89e4T2 |
| 43 | 1+294.T+7.95e4T2 |
| 47 | 1+540.T+1.03e5T2 |
| 53 | 1−661.T+1.48e5T2 |
| 59 | 1−410.T+2.05e5T2 |
| 61 | 1−46.0T+2.26e5T2 |
| 67 | 1+10.4T+3.00e5T2 |
| 71 | 1+491.T+3.57e5T2 |
| 73 | 1−814.T+3.89e5T2 |
| 79 | 1+858.T+4.93e5T2 |
| 83 | 1−1.05e3T+5.71e5T2 |
| 89 | 1−341.T+7.04e5T2 |
| 97 | 1−1.41e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.94407056366102801462090596588, −11.72068875396477307731707721648, −10.10584177281600404172853271759, −9.370374024224624385363332349352, −8.289592867360317828739872464393, −6.73154344767138228439247298320, −5.73767964529781460104708135065, −4.67579796851340841731909011122, −3.38116872597316928849224752835, −0.810811962771265949365583456405,
0.810811962771265949365583456405, 3.38116872597316928849224752835, 4.67579796851340841731909011122, 5.73767964529781460104708135065, 6.73154344767138228439247298320, 8.289592867360317828739872464393, 9.370374024224624385363332349352, 10.10584177281600404172853271759, 11.72068875396477307731707721648, 11.94407056366102801462090596588