Properties

Label 2-175-1.1-c3-0-4
Degree $2$
Conductor $175$
Sign $1$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.48·2-s − 0.850·3-s + 4.14·4-s + 2.96·6-s − 7·7-s + 13.4·8-s − 26.2·9-s − 6.90·11-s − 3.52·12-s + 22.1·13-s + 24.3·14-s − 79.9·16-s − 88.3·17-s + 91.5·18-s + 36.9·19-s + 5.95·21-s + 24.0·22-s + 95.5·23-s − 11.4·24-s − 77.1·26-s + 45.2·27-s − 29.0·28-s + 269.·29-s + 197.·31-s + 171.·32-s + 5.87·33-s + 307.·34-s + ⋯
L(s)  = 1  − 1.23·2-s − 0.163·3-s + 0.518·4-s + 0.201·6-s − 0.377·7-s + 0.593·8-s − 0.973·9-s − 0.189·11-s − 0.0848·12-s + 0.472·13-s + 0.465·14-s − 1.24·16-s − 1.25·17-s + 1.19·18-s + 0.446·19-s + 0.0618·21-s + 0.233·22-s + 0.866·23-s − 0.0970·24-s − 0.582·26-s + 0.322·27-s − 0.196·28-s + 1.72·29-s + 1.14·31-s + 0.946·32-s + 0.0309·33-s + 1.55·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6230875634\)
\(L(\frac12)\) \(\approx\) \(0.6230875634\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 + 7T \)
good2 \( 1 + 3.48T + 8T^{2} \)
3 \( 1 + 0.850T + 27T^{2} \)
11 \( 1 + 6.90T + 1.33e3T^{2} \)
13 \( 1 - 22.1T + 2.19e3T^{2} \)
17 \( 1 + 88.3T + 4.91e3T^{2} \)
19 \( 1 - 36.9T + 6.85e3T^{2} \)
23 \( 1 - 95.5T + 1.21e4T^{2} \)
29 \( 1 - 269.T + 2.43e4T^{2} \)
31 \( 1 - 197.T + 2.97e4T^{2} \)
37 \( 1 + 2.14T + 5.06e4T^{2} \)
41 \( 1 - 174.T + 6.89e4T^{2} \)
43 \( 1 - 17.0T + 7.95e4T^{2} \)
47 \( 1 - 528.T + 1.03e5T^{2} \)
53 \( 1 - 641.T + 1.48e5T^{2} \)
59 \( 1 + 642.T + 2.05e5T^{2} \)
61 \( 1 - 142.T + 2.26e5T^{2} \)
67 \( 1 + 478.T + 3.00e5T^{2} \)
71 \( 1 - 105.T + 3.57e5T^{2} \)
73 \( 1 + 986.T + 3.89e5T^{2} \)
79 \( 1 + 1.09e3T + 4.93e5T^{2} \)
83 \( 1 - 1.23e3T + 5.71e5T^{2} \)
89 \( 1 + 711.T + 7.04e5T^{2} \)
97 \( 1 - 636.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.93883149093065659701927061456, −10.97290372419542313598210532952, −10.22546506616105285287166021515, −8.991951792878873405236081482564, −8.531341396647836814886256443458, −7.25052206559731226581520476539, −6.12239047875226976596484513044, −4.59256594390212593096079105703, −2.69644973675926636942754965773, −0.74630730814469119042364174987, 0.74630730814469119042364174987, 2.69644973675926636942754965773, 4.59256594390212593096079105703, 6.12239047875226976596484513044, 7.25052206559731226581520476539, 8.531341396647836814886256443458, 8.991951792878873405236081482564, 10.22546506616105285287166021515, 10.97290372419542313598210532952, 11.93883149093065659701927061456

Graph of the $Z$-function along the critical line