Properties

Label 2-175-1.1-c3-0-3
Degree $2$
Conductor $175$
Sign $1$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.67·2-s − 2.49·3-s − 5.19·4-s + 4.17·6-s + 7·7-s + 22.1·8-s − 20.7·9-s − 57.5·11-s + 12.9·12-s − 45.5·13-s − 11.7·14-s + 4.52·16-s + 92.0·17-s + 34.8·18-s + 125.·19-s − 17.4·21-s + 96.4·22-s + 158.·23-s − 55.1·24-s + 76.2·26-s + 119.·27-s − 36.3·28-s − 40.1·29-s + 49.5·31-s − 184.·32-s + 143.·33-s − 154.·34-s + ⋯
L(s)  = 1  − 0.592·2-s − 0.479·3-s − 0.649·4-s + 0.284·6-s + 0.377·7-s + 0.976·8-s − 0.769·9-s − 1.57·11-s + 0.311·12-s − 0.971·13-s − 0.223·14-s + 0.0707·16-s + 1.31·17-s + 0.455·18-s + 1.51·19-s − 0.181·21-s + 0.934·22-s + 1.43·23-s − 0.468·24-s + 0.575·26-s + 0.849·27-s − 0.245·28-s − 0.257·29-s + 0.287·31-s − 1.01·32-s + 0.757·33-s − 0.777·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6970078166\)
\(L(\frac12)\) \(\approx\) \(0.6970078166\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 - 7T \)
good2 \( 1 + 1.67T + 8T^{2} \)
3 \( 1 + 2.49T + 27T^{2} \)
11 \( 1 + 57.5T + 1.33e3T^{2} \)
13 \( 1 + 45.5T + 2.19e3T^{2} \)
17 \( 1 - 92.0T + 4.91e3T^{2} \)
19 \( 1 - 125.T + 6.85e3T^{2} \)
23 \( 1 - 158.T + 1.21e4T^{2} \)
29 \( 1 + 40.1T + 2.43e4T^{2} \)
31 \( 1 - 49.5T + 2.97e4T^{2} \)
37 \( 1 - 231.T + 5.06e4T^{2} \)
41 \( 1 - 169.T + 6.89e4T^{2} \)
43 \( 1 + 147.T + 7.95e4T^{2} \)
47 \( 1 + 67.0T + 1.03e5T^{2} \)
53 \( 1 - 268.T + 1.48e5T^{2} \)
59 \( 1 + 240.T + 2.05e5T^{2} \)
61 \( 1 - 90.4T + 2.26e5T^{2} \)
67 \( 1 + 406.T + 3.00e5T^{2} \)
71 \( 1 - 330.T + 3.57e5T^{2} \)
73 \( 1 - 546.T + 3.89e5T^{2} \)
79 \( 1 + 25.3T + 4.93e5T^{2} \)
83 \( 1 - 376.T + 5.71e5T^{2} \)
89 \( 1 - 1.02e3T + 7.04e5T^{2} \)
97 \( 1 + 942.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.17641640107063606574338758742, −11.09814476791592664877734107500, −10.18578696555726564955618686112, −9.327452952554630732196799280848, −8.054894951436467442285571365521, −7.46036289748934406731674258742, −5.44584021491038244500703374040, −4.98708788747324604197304626313, −2.94453780951520378804401365235, −0.73552160158185913651901572540, 0.73552160158185913651901572540, 2.94453780951520378804401365235, 4.98708788747324604197304626313, 5.44584021491038244500703374040, 7.46036289748934406731674258742, 8.054894951436467442285571365521, 9.327452952554630732196799280848, 10.18578696555726564955618686112, 11.09814476791592664877734107500, 12.17641640107063606574338758742

Graph of the $Z$-function along the critical line