L(s) = 1 | + 1.67·2-s + 2.49·3-s − 5.19·4-s + 4.17·6-s − 7·7-s − 22.1·8-s − 20.7·9-s − 57.5·11-s − 12.9·12-s + 45.5·13-s − 11.7·14-s + 4.52·16-s − 92.0·17-s − 34.8·18-s + 125.·19-s − 17.4·21-s − 96.4·22-s − 158.·23-s − 55.1·24-s + 76.2·26-s − 119.·27-s + 36.3·28-s − 40.1·29-s + 49.5·31-s + 184.·32-s − 143.·33-s − 154.·34-s + ⋯ |
L(s) = 1 | + 0.592·2-s + 0.479·3-s − 0.649·4-s + 0.284·6-s − 0.377·7-s − 0.976·8-s − 0.769·9-s − 1.57·11-s − 0.311·12-s + 0.971·13-s − 0.223·14-s + 0.0707·16-s − 1.31·17-s − 0.455·18-s + 1.51·19-s − 0.181·21-s − 0.934·22-s − 1.43·23-s − 0.468·24-s + 0.575·26-s − 0.849·27-s + 0.245·28-s − 0.257·29-s + 0.287·31-s + 1.01·32-s − 0.757·33-s − 0.777·34-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1+7T |
good | 2 | 1−1.67T+8T2 |
| 3 | 1−2.49T+27T2 |
| 11 | 1+57.5T+1.33e3T2 |
| 13 | 1−45.5T+2.19e3T2 |
| 17 | 1+92.0T+4.91e3T2 |
| 19 | 1−125.T+6.85e3T2 |
| 23 | 1+158.T+1.21e4T2 |
| 29 | 1+40.1T+2.43e4T2 |
| 31 | 1−49.5T+2.97e4T2 |
| 37 | 1+231.T+5.06e4T2 |
| 41 | 1−169.T+6.89e4T2 |
| 43 | 1−147.T+7.95e4T2 |
| 47 | 1−67.0T+1.03e5T2 |
| 53 | 1+268.T+1.48e5T2 |
| 59 | 1+240.T+2.05e5T2 |
| 61 | 1−90.4T+2.26e5T2 |
| 67 | 1−406.T+3.00e5T2 |
| 71 | 1−330.T+3.57e5T2 |
| 73 | 1+546.T+3.89e5T2 |
| 79 | 1+25.3T+4.93e5T2 |
| 83 | 1+376.T+5.71e5T2 |
| 89 | 1−1.02e3T+7.04e5T2 |
| 97 | 1−942.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.95727913560625512753860126665, −10.80952916947205130735145169703, −9.602708671841040568857858336486, −8.675240192038183125173313709889, −7.81176034315380149747627902391, −6.09335020160972566054338377833, −5.19556475339900537700143597115, −3.76859841798221154017980803385, −2.67380837599508768975615599995, 0,
2.67380837599508768975615599995, 3.76859841798221154017980803385, 5.19556475339900537700143597115, 6.09335020160972566054338377833, 7.81176034315380149747627902391, 8.675240192038183125173313709889, 9.602708671841040568857858336486, 10.80952916947205130735145169703, 11.95727913560625512753860126665