L(s) = 1 | + 4.04·2-s − 6.52·3-s + 8.39·4-s − 26.4·6-s − 7·7-s + 1.58·8-s + 15.6·9-s + 6.78·11-s − 54.7·12-s − 48.9·13-s − 28.3·14-s − 60.7·16-s − 92.4·17-s + 63.1·18-s − 125.·19-s + 45.6·21-s + 27.4·22-s + 32.2·23-s − 10.3·24-s − 198.·26-s + 74.3·27-s − 58.7·28-s + 282.·29-s + 205.·31-s − 258.·32-s − 44.2·33-s − 374.·34-s + ⋯ |
L(s) = 1 | + 1.43·2-s − 1.25·3-s + 1.04·4-s − 1.79·6-s − 0.377·7-s + 0.0698·8-s + 0.578·9-s + 0.185·11-s − 1.31·12-s − 1.04·13-s − 0.541·14-s − 0.948·16-s − 1.31·17-s + 0.827·18-s − 1.51·19-s + 0.474·21-s + 0.266·22-s + 0.292·23-s − 0.0877·24-s − 1.49·26-s + 0.530·27-s − 0.396·28-s + 1.81·29-s + 1.19·31-s − 1.42·32-s − 0.233·33-s − 1.88·34-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1+7T |
good | 2 | 1−4.04T+8T2 |
| 3 | 1+6.52T+27T2 |
| 11 | 1−6.78T+1.33e3T2 |
| 13 | 1+48.9T+2.19e3T2 |
| 17 | 1+92.4T+4.91e3T2 |
| 19 | 1+125.T+6.85e3T2 |
| 23 | 1−32.2T+1.21e4T2 |
| 29 | 1−282.T+2.43e4T2 |
| 31 | 1−205.T+2.97e4T2 |
| 37 | 1+190.T+5.06e4T2 |
| 41 | 1−123.T+6.89e4T2 |
| 43 | 1+35.0T+7.95e4T2 |
| 47 | 1+419.T+1.03e5T2 |
| 53 | 1−0.365T+1.48e5T2 |
| 59 | 1−328.T+2.05e5T2 |
| 61 | 1+515.T+2.26e5T2 |
| 67 | 1−828.T+3.00e5T2 |
| 71 | 1+496.T+3.57e5T2 |
| 73 | 1+701.T+3.89e5T2 |
| 79 | 1−199.T+4.93e5T2 |
| 83 | 1−194.T+5.71e5T2 |
| 89 | 1−137.T+7.04e5T2 |
| 97 | 1+220.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.03800311785481645089385689920, −11.16346308153900662304801112102, −10.18794925764385988798726158836, −8.692080342934056033971275683084, −6.70309320644208085946320962263, −6.34139052150607437890645164701, −5.01780550110484013517578075560, −4.37161285307502519328235807274, −2.63054893822071619729802472483, 0,
2.63054893822071619729802472483, 4.37161285307502519328235807274, 5.01780550110484013517578075560, 6.34139052150607437890645164701, 6.70309320644208085946320962263, 8.692080342934056033971275683084, 10.18794925764385988798726158836, 11.16346308153900662304801112102, 12.03800311785481645089385689920