Properties

Label 2-175-1.1-c3-0-23
Degree $2$
Conductor $175$
Sign $-1$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2·3-s − 7·4-s + 2·6-s + 7·7-s − 15·8-s − 23·9-s − 8·11-s − 14·12-s − 28·13-s + 7·14-s + 41·16-s − 54·17-s − 23·18-s − 110·19-s + 14·21-s − 8·22-s − 48·23-s − 30·24-s − 28·26-s − 100·27-s − 49·28-s − 110·29-s + 12·31-s + 161·32-s − 16·33-s − 54·34-s + ⋯
L(s)  = 1  + 0.353·2-s + 0.384·3-s − 7/8·4-s + 0.136·6-s + 0.377·7-s − 0.662·8-s − 0.851·9-s − 0.219·11-s − 0.336·12-s − 0.597·13-s + 0.133·14-s + 0.640·16-s − 0.770·17-s − 0.301·18-s − 1.32·19-s + 0.145·21-s − 0.0775·22-s − 0.435·23-s − 0.255·24-s − 0.211·26-s − 0.712·27-s − 0.330·28-s − 0.704·29-s + 0.0695·31-s + 0.889·32-s − 0.0844·33-s − 0.272·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 - p T \)
good2 \( 1 - T + p^{3} T^{2} \)
3 \( 1 - 2 T + p^{3} T^{2} \)
11 \( 1 + 8 T + p^{3} T^{2} \)
13 \( 1 + 28 T + p^{3} T^{2} \)
17 \( 1 + 54 T + p^{3} T^{2} \)
19 \( 1 + 110 T + p^{3} T^{2} \)
23 \( 1 + 48 T + p^{3} T^{2} \)
29 \( 1 + 110 T + p^{3} T^{2} \)
31 \( 1 - 12 T + p^{3} T^{2} \)
37 \( 1 - 246 T + p^{3} T^{2} \)
41 \( 1 - 182 T + p^{3} T^{2} \)
43 \( 1 + 128 T + p^{3} T^{2} \)
47 \( 1 + 324 T + p^{3} T^{2} \)
53 \( 1 - 162 T + p^{3} T^{2} \)
59 \( 1 - 810 T + p^{3} T^{2} \)
61 \( 1 + 8 p T + p^{3} T^{2} \)
67 \( 1 + 244 T + p^{3} T^{2} \)
71 \( 1 + 768 T + p^{3} T^{2} \)
73 \( 1 - 702 T + p^{3} T^{2} \)
79 \( 1 - 440 T + p^{3} T^{2} \)
83 \( 1 - 1302 T + p^{3} T^{2} \)
89 \( 1 - 730 T + p^{3} T^{2} \)
97 \( 1 + 294 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.89237034518600914822938958782, −10.81120447363476313699102904265, −9.552205077665165411705217571640, −8.678543607105515595539268343347, −7.87663652873329034579351603638, −6.22183373914071363584399207570, −5.04707921541420773464099833242, −3.96254042204938223319905892407, −2.44442207159288823608960675233, 0, 2.44442207159288823608960675233, 3.96254042204938223319905892407, 5.04707921541420773464099833242, 6.22183373914071363584399207570, 7.87663652873329034579351603638, 8.678543607105515595539268343347, 9.552205077665165411705217571640, 10.81120447363476313699102904265, 11.89237034518600914822938958782

Graph of the $Z$-function along the critical line