L(s) = 1 | − 1.55·2-s + 4.96·3-s − 5.58·4-s − 7.71·6-s − 7·7-s + 21.1·8-s − 2.38·9-s + 29.8·11-s − 27.6·12-s − 90.7·13-s + 10.8·14-s + 11.7·16-s − 29.5·17-s + 3.70·18-s − 62.3·19-s − 34.7·21-s − 46.3·22-s − 90.6·23-s + 104.·24-s + 141.·26-s − 145.·27-s + 39.0·28-s + 193.·29-s − 152.·31-s − 187.·32-s + 147.·33-s + 45.9·34-s + ⋯ |
L(s) = 1 | − 0.549·2-s + 0.954·3-s − 0.697·4-s − 0.525·6-s − 0.377·7-s + 0.933·8-s − 0.0882·9-s + 0.817·11-s − 0.666·12-s − 1.93·13-s + 0.207·14-s + 0.184·16-s − 0.421·17-s + 0.0485·18-s − 0.752·19-s − 0.360·21-s − 0.449·22-s − 0.821·23-s + 0.891·24-s + 1.06·26-s − 1.03·27-s + 0.263·28-s + 1.23·29-s − 0.881·31-s − 1.03·32-s + 0.780·33-s + 0.232·34-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1+7T |
good | 2 | 1+1.55T+8T2 |
| 3 | 1−4.96T+27T2 |
| 11 | 1−29.8T+1.33e3T2 |
| 13 | 1+90.7T+2.19e3T2 |
| 17 | 1+29.5T+4.91e3T2 |
| 19 | 1+62.3T+6.85e3T2 |
| 23 | 1+90.6T+1.21e4T2 |
| 29 | 1−193.T+2.43e4T2 |
| 31 | 1+152.T+2.97e4T2 |
| 37 | 1+102.T+5.06e4T2 |
| 41 | 1+266.T+6.89e4T2 |
| 43 | 1+387.T+7.95e4T2 |
| 47 | 1−152.T+1.03e5T2 |
| 53 | 1−81.5T+1.48e5T2 |
| 59 | 1+235.T+2.05e5T2 |
| 61 | 1−510.T+2.26e5T2 |
| 67 | 1−347.T+3.00e5T2 |
| 71 | 1−317.T+3.57e5T2 |
| 73 | 1−709.T+3.89e5T2 |
| 79 | 1−1.06e3T+4.93e5T2 |
| 83 | 1+503.T+5.71e5T2 |
| 89 | 1−482.T+7.04e5T2 |
| 97 | 1+481.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.87090338807152925565847919254, −10.29523773581558706612515267513, −9.556645178497382588969375651863, −8.783426614830285971857754400643, −7.936645098058105761761755501884, −6.76912014646939290192206236008, −4.99134747386727011341159491398, −3.73887235298642340680868516013, −2.18617878655924310818044910082, 0,
2.18617878655924310818044910082, 3.73887235298642340680868516013, 4.99134747386727011341159491398, 6.76912014646939290192206236008, 7.936645098058105761761755501884, 8.783426614830285971857754400643, 9.556645178497382588969375651863, 10.29523773581558706612515267513, 11.87090338807152925565847919254