L(s) = 1 | + 5.31·2-s + 1.93·3-s + 20.2·4-s + 10.3·6-s + 7·7-s + 65.0·8-s − 23.2·9-s + 25.5·11-s + 39.2·12-s − 64.1·13-s + 37.1·14-s + 183.·16-s − 27.6·17-s − 123.·18-s + 0.792·19-s + 13.5·21-s + 135.·22-s + 108.·23-s + 126.·24-s − 340.·26-s − 97.4·27-s + 141.·28-s − 234.·29-s + 129.·31-s + 455.·32-s + 49.5·33-s − 147.·34-s + ⋯ |
L(s) = 1 | + 1.87·2-s + 0.373·3-s + 2.52·4-s + 0.701·6-s + 0.377·7-s + 2.87·8-s − 0.860·9-s + 0.700·11-s + 0.944·12-s − 1.36·13-s + 0.710·14-s + 2.86·16-s − 0.395·17-s − 1.61·18-s + 0.00956·19-s + 0.141·21-s + 1.31·22-s + 0.984·23-s + 1.07·24-s − 2.56·26-s − 0.694·27-s + 0.956·28-s − 1.49·29-s + 0.748·31-s + 2.51·32-s + 0.261·33-s − 0.742·34-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
5.558269722 |
L(21) |
≈ |
5.558269722 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1−7T |
good | 2 | 1−5.31T+8T2 |
| 3 | 1−1.93T+27T2 |
| 11 | 1−25.5T+1.33e3T2 |
| 13 | 1+64.1T+2.19e3T2 |
| 17 | 1+27.6T+4.91e3T2 |
| 19 | 1−0.792T+6.85e3T2 |
| 23 | 1−108.T+1.21e4T2 |
| 29 | 1+234.T+2.43e4T2 |
| 31 | 1−129.T+2.97e4T2 |
| 37 | 1−38.3T+5.06e4T2 |
| 41 | 1+403.T+6.89e4T2 |
| 43 | 1−172.T+7.95e4T2 |
| 47 | 1−206.T+1.03e5T2 |
| 53 | 1−144.T+1.48e5T2 |
| 59 | 1+679.T+2.05e5T2 |
| 61 | 1+574.T+2.26e5T2 |
| 67 | 1−515.T+3.00e5T2 |
| 71 | 1−556.T+3.57e5T2 |
| 73 | 1+173.T+3.89e5T2 |
| 79 | 1−79.3T+4.93e5T2 |
| 83 | 1−1.04e3T+5.71e5T2 |
| 89 | 1−652.T+7.04e5T2 |
| 97 | 1−515.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.33347982917192994879861594794, −11.65584461523976225293688474095, −10.80015034965693102238268039423, −9.233008820908659393501233777773, −7.72245743193950273728188066175, −6.70617159427420420140411328914, −5.51016825489828582941858973925, −4.57395809141052063824924243407, −3.29365934194548690976233143321, −2.15785001882933881199835507726,
2.15785001882933881199835507726, 3.29365934194548690976233143321, 4.57395809141052063824924243407, 5.51016825489828582941858973925, 6.70617159427420420140411328914, 7.72245743193950273728188066175, 9.233008820908659393501233777773, 10.80015034965693102238268039423, 11.65584461523976225293688474095, 12.33347982917192994879861594794