Properties

Label 2-175-1.1-c3-0-2
Degree $2$
Conductor $175$
Sign $1$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.86·2-s − 9.53·3-s − 4.53·4-s − 17.7·6-s − 7·7-s − 23.3·8-s + 63.9·9-s − 36.9·11-s + 43.2·12-s + 22.7·13-s − 13.0·14-s − 7.13·16-s + 135.·17-s + 119.·18-s + 6.22·19-s + 66.7·21-s − 68.8·22-s + 48.7·23-s + 222.·24-s + 42.4·26-s − 352.·27-s + 31.7·28-s − 71.1·29-s + 124.·31-s + 173.·32-s + 352.·33-s + 252.·34-s + ⋯
L(s)  = 1  + 0.657·2-s − 1.83·3-s − 0.567·4-s − 1.20·6-s − 0.377·7-s − 1.03·8-s + 2.36·9-s − 1.01·11-s + 1.04·12-s + 0.486·13-s − 0.248·14-s − 0.111·16-s + 1.93·17-s + 1.55·18-s + 0.0751·19-s + 0.693·21-s − 0.666·22-s + 0.441·23-s + 1.89·24-s + 0.319·26-s − 2.51·27-s + 0.214·28-s − 0.455·29-s + 0.723·31-s + 0.957·32-s + 1.86·33-s + 1.27·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8275420451\)
\(L(\frac12)\) \(\approx\) \(0.8275420451\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 + 7T \)
good2 \( 1 - 1.86T + 8T^{2} \)
3 \( 1 + 9.53T + 27T^{2} \)
11 \( 1 + 36.9T + 1.33e3T^{2} \)
13 \( 1 - 22.7T + 2.19e3T^{2} \)
17 \( 1 - 135.T + 4.91e3T^{2} \)
19 \( 1 - 6.22T + 6.85e3T^{2} \)
23 \( 1 - 48.7T + 1.21e4T^{2} \)
29 \( 1 + 71.1T + 2.43e4T^{2} \)
31 \( 1 - 124.T + 2.97e4T^{2} \)
37 \( 1 + 84.9T + 5.06e4T^{2} \)
41 \( 1 - 92.5T + 6.89e4T^{2} \)
43 \( 1 + 299.T + 7.95e4T^{2} \)
47 \( 1 - 72.9T + 1.03e5T^{2} \)
53 \( 1 + 362.T + 1.48e5T^{2} \)
59 \( 1 + 375.T + 2.05e5T^{2} \)
61 \( 1 - 689.T + 2.26e5T^{2} \)
67 \( 1 - 972.T + 3.00e5T^{2} \)
71 \( 1 - 281.T + 3.57e5T^{2} \)
73 \( 1 - 742.T + 3.89e5T^{2} \)
79 \( 1 - 592.T + 4.93e5T^{2} \)
83 \( 1 - 493.T + 5.71e5T^{2} \)
89 \( 1 - 962.T + 7.04e5T^{2} \)
97 \( 1 + 740.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.40612508782587693608960076415, −11.47366970086481657705138402461, −10.40104392087543190326141795145, −9.647099675013323924887815864442, −7.918306130008217057721758326833, −6.50624794869668876470904935429, −5.53916962541739569004978205000, −4.99133203956190799975931508539, −3.54478505893956105932917834275, −0.71462265429547067925978936011, 0.71462265429547067925978936011, 3.54478505893956105932917834275, 4.99133203956190799975931508539, 5.53916962541739569004978205000, 6.50624794869668876470904935429, 7.918306130008217057721758326833, 9.647099675013323924887815864442, 10.40104392087543190326141795145, 11.47366970086481657705138402461, 12.40612508782587693608960076415

Graph of the $Z$-function along the critical line