Properties

Label 2-175-1.1-c3-0-17
Degree $2$
Conductor $175$
Sign $-1$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.41·2-s + 4.65·3-s + 21.3·4-s − 25.2·6-s + 7·7-s − 72.0·8-s − 5.31·9-s − 52.2·11-s + 99.2·12-s − 30.6·13-s − 37.8·14-s + 219.·16-s − 37.2·17-s + 28.7·18-s + 80.2·19-s + 32.5·21-s + 282.·22-s − 25.8·23-s − 335.·24-s + 165.·26-s − 150.·27-s + 149.·28-s + 20.9·29-s − 314.·31-s − 613.·32-s − 243.·33-s + 201.·34-s + ⋯
L(s)  = 1  − 1.91·2-s + 0.896·3-s + 2.66·4-s − 1.71·6-s + 0.377·7-s − 3.18·8-s − 0.196·9-s − 1.43·11-s + 2.38·12-s − 0.654·13-s − 0.723·14-s + 3.43·16-s − 0.531·17-s + 0.376·18-s + 0.968·19-s + 0.338·21-s + 2.74·22-s − 0.234·23-s − 2.85·24-s + 1.25·26-s − 1.07·27-s + 1.00·28-s + 0.134·29-s − 1.82·31-s − 3.38·32-s − 1.28·33-s + 1.01·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 - 7T \)
good2 \( 1 + 5.41T + 8T^{2} \)
3 \( 1 - 4.65T + 27T^{2} \)
11 \( 1 + 52.2T + 1.33e3T^{2} \)
13 \( 1 + 30.6T + 2.19e3T^{2} \)
17 \( 1 + 37.2T + 4.91e3T^{2} \)
19 \( 1 - 80.2T + 6.85e3T^{2} \)
23 \( 1 + 25.8T + 1.21e4T^{2} \)
29 \( 1 - 20.9T + 2.43e4T^{2} \)
31 \( 1 + 314.T + 2.97e4T^{2} \)
37 \( 1 + 197.T + 5.06e4T^{2} \)
41 \( 1 - 11.3T + 6.89e4T^{2} \)
43 \( 1 - 33.8T + 7.95e4T^{2} \)
47 \( 1 - 361.T + 1.03e5T^{2} \)
53 \( 1 + 153.T + 1.48e5T^{2} \)
59 \( 1 + 616T + 2.05e5T^{2} \)
61 \( 1 - 15.2T + 2.26e5T^{2} \)
67 \( 1 - 166.T + 3.00e5T^{2} \)
71 \( 1 + 952T + 3.57e5T^{2} \)
73 \( 1 - 148.T + 3.89e5T^{2} \)
79 \( 1 - 857.T + 4.93e5T^{2} \)
83 \( 1 + 660.T + 5.71e5T^{2} \)
89 \( 1 + 45.7T + 7.04e5T^{2} \)
97 \( 1 + 1.68e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.28505152687293393368280636519, −10.49534608207034099304100668135, −9.495296333070899946858132608086, −8.733178217326145290307301973842, −7.82242308001519031268868003098, −7.27516159588567079769821899657, −5.55668888252589109026295256726, −2.99085211354196282624221812754, −1.99036491990729153464656318823, 0, 1.99036491990729153464656318823, 2.99085211354196282624221812754, 5.55668888252589109026295256726, 7.27516159588567079769821899657, 7.82242308001519031268868003098, 8.733178217326145290307301973842, 9.495296333070899946858132608086, 10.49534608207034099304100668135, 11.28505152687293393368280636519

Graph of the $Z$-function along the critical line