L(s) = 1 | − 5.41·2-s + 4.65·3-s + 21.3·4-s − 25.2·6-s + 7·7-s − 72.0·8-s − 5.31·9-s − 52.2·11-s + 99.2·12-s − 30.6·13-s − 37.8·14-s + 219.·16-s − 37.2·17-s + 28.7·18-s + 80.2·19-s + 32.5·21-s + 282.·22-s − 25.8·23-s − 335.·24-s + 165.·26-s − 150.·27-s + 149.·28-s + 20.9·29-s − 314.·31-s − 613.·32-s − 243.·33-s + 201.·34-s + ⋯ |
L(s) = 1 | − 1.91·2-s + 0.896·3-s + 2.66·4-s − 1.71·6-s + 0.377·7-s − 3.18·8-s − 0.196·9-s − 1.43·11-s + 2.38·12-s − 0.654·13-s − 0.723·14-s + 3.43·16-s − 0.531·17-s + 0.376·18-s + 0.968·19-s + 0.338·21-s + 2.74·22-s − 0.234·23-s − 2.85·24-s + 1.25·26-s − 1.07·27-s + 1.00·28-s + 0.134·29-s − 1.82·31-s − 3.38·32-s − 1.28·33-s + 1.01·34-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1−7T |
good | 2 | 1+5.41T+8T2 |
| 3 | 1−4.65T+27T2 |
| 11 | 1+52.2T+1.33e3T2 |
| 13 | 1+30.6T+2.19e3T2 |
| 17 | 1+37.2T+4.91e3T2 |
| 19 | 1−80.2T+6.85e3T2 |
| 23 | 1+25.8T+1.21e4T2 |
| 29 | 1−20.9T+2.43e4T2 |
| 31 | 1+314.T+2.97e4T2 |
| 37 | 1+197.T+5.06e4T2 |
| 41 | 1−11.3T+6.89e4T2 |
| 43 | 1−33.8T+7.95e4T2 |
| 47 | 1−361.T+1.03e5T2 |
| 53 | 1+153.T+1.48e5T2 |
| 59 | 1+616T+2.05e5T2 |
| 61 | 1−15.2T+2.26e5T2 |
| 67 | 1−166.T+3.00e5T2 |
| 71 | 1+952T+3.57e5T2 |
| 73 | 1−148.T+3.89e5T2 |
| 79 | 1−857.T+4.93e5T2 |
| 83 | 1+660.T+5.71e5T2 |
| 89 | 1+45.7T+7.04e5T2 |
| 97 | 1+1.68e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.28505152687293393368280636519, −10.49534608207034099304100668135, −9.495296333070899946858132608086, −8.733178217326145290307301973842, −7.82242308001519031268868003098, −7.27516159588567079769821899657, −5.55668888252589109026295256726, −2.99085211354196282624221812754, −1.99036491990729153464656318823, 0,
1.99036491990729153464656318823, 2.99085211354196282624221812754, 5.55668888252589109026295256726, 7.27516159588567079769821899657, 7.82242308001519031268868003098, 8.733178217326145290307301973842, 9.495296333070899946858132608086, 10.49534608207034099304100668135, 11.28505152687293393368280636519