L(s) = 1 | + 4.84·2-s − 9.58·3-s + 15.4·4-s − 46.3·6-s + 7·7-s + 36.0·8-s + 64.7·9-s + 62.1·11-s − 147.·12-s + 14.0·13-s + 33.8·14-s + 50.9·16-s + 63.5·17-s + 313.·18-s + 48.7·19-s − 67.0·21-s + 301.·22-s − 99.3·23-s − 345.·24-s + 68.2·26-s − 362.·27-s + 108.·28-s − 69.0·29-s − 9.68·31-s − 41.7·32-s − 595.·33-s + 307.·34-s + ⋯ |
L(s) = 1 | + 1.71·2-s − 1.84·3-s + 1.93·4-s − 3.15·6-s + 0.377·7-s + 1.59·8-s + 2.39·9-s + 1.70·11-s − 3.55·12-s + 0.300·13-s + 0.646·14-s + 0.795·16-s + 0.906·17-s + 4.10·18-s + 0.588·19-s − 0.696·21-s + 2.91·22-s − 0.900·23-s − 2.93·24-s + 0.514·26-s − 2.58·27-s + 0.729·28-s − 0.442·29-s − 0.0561·31-s − 0.230·32-s − 3.14·33-s + 1.55·34-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.965741682 |
L(21) |
≈ |
2.965741682 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1−7T |
good | 2 | 1−4.84T+8T2 |
| 3 | 1+9.58T+27T2 |
| 11 | 1−62.1T+1.33e3T2 |
| 13 | 1−14.0T+2.19e3T2 |
| 17 | 1−63.5T+4.91e3T2 |
| 19 | 1−48.7T+6.85e3T2 |
| 23 | 1+99.3T+1.21e4T2 |
| 29 | 1+69.0T+2.43e4T2 |
| 31 | 1+9.68T+2.97e4T2 |
| 37 | 1−240.T+5.06e4T2 |
| 41 | 1−335.T+6.89e4T2 |
| 43 | 1−51.2T+7.95e4T2 |
| 47 | 1+451.T+1.03e5T2 |
| 53 | 1+180.T+1.48e5T2 |
| 59 | 1−268.T+2.05e5T2 |
| 61 | 1+323.T+2.26e5T2 |
| 67 | 1+541.T+3.00e5T2 |
| 71 | 1+161.T+3.57e5T2 |
| 73 | 1−305.T+3.89e5T2 |
| 79 | 1+504.T+4.93e5T2 |
| 83 | 1+513.T+5.71e5T2 |
| 89 | 1−543.T+7.04e5T2 |
| 97 | 1−1.86e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.10037201381193873882679650320, −11.65505903800325254953813146299, −10.98230026189314591039648801696, −9.665859362322318616591747280309, −7.40112779910478852028997592301, −6.30302105881551788717011409308, −5.79567778775109122752182892771, −4.68188531151766533414820375917, −3.80684917722860389696762232536, −1.35796682910238191542612485570,
1.35796682910238191542612485570, 3.80684917722860389696762232536, 4.68188531151766533414820375917, 5.79567778775109122752182892771, 6.30302105881551788717011409308, 7.40112779910478852028997592301, 9.665859362322318616591747280309, 10.98230026189314591039648801696, 11.65505903800325254953813146299, 12.10037201381193873882679650320