L(s) = 1 | − 4.84·2-s + 9.58·3-s + 15.4·4-s − 46.3·6-s − 7·7-s − 36.0·8-s + 64.7·9-s + 62.1·11-s + 147.·12-s − 14.0·13-s + 33.8·14-s + 50.9·16-s − 63.5·17-s − 313.·18-s + 48.7·19-s − 67.0·21-s − 301.·22-s + 99.3·23-s − 345.·24-s + 68.2·26-s + 362.·27-s − 108.·28-s − 69.0·29-s − 9.68·31-s + 41.7·32-s + 595.·33-s + 307.·34-s + ⋯ |
L(s) = 1 | − 1.71·2-s + 1.84·3-s + 1.93·4-s − 3.15·6-s − 0.377·7-s − 1.59·8-s + 2.39·9-s + 1.70·11-s + 3.55·12-s − 0.300·13-s + 0.646·14-s + 0.795·16-s − 0.906·17-s − 4.10·18-s + 0.588·19-s − 0.696·21-s − 2.91·22-s + 0.900·23-s − 2.93·24-s + 0.514·26-s + 2.58·27-s − 0.729·28-s − 0.442·29-s − 0.0561·31-s + 0.230·32-s + 3.14·33-s + 1.55·34-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.544092944 |
L(21) |
≈ |
1.544092944 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1+7T |
good | 2 | 1+4.84T+8T2 |
| 3 | 1−9.58T+27T2 |
| 11 | 1−62.1T+1.33e3T2 |
| 13 | 1+14.0T+2.19e3T2 |
| 17 | 1+63.5T+4.91e3T2 |
| 19 | 1−48.7T+6.85e3T2 |
| 23 | 1−99.3T+1.21e4T2 |
| 29 | 1+69.0T+2.43e4T2 |
| 31 | 1+9.68T+2.97e4T2 |
| 37 | 1+240.T+5.06e4T2 |
| 41 | 1−335.T+6.89e4T2 |
| 43 | 1+51.2T+7.95e4T2 |
| 47 | 1−451.T+1.03e5T2 |
| 53 | 1−180.T+1.48e5T2 |
| 59 | 1−268.T+2.05e5T2 |
| 61 | 1+323.T+2.26e5T2 |
| 67 | 1−541.T+3.00e5T2 |
| 71 | 1+161.T+3.57e5T2 |
| 73 | 1+305.T+3.89e5T2 |
| 79 | 1+504.T+4.93e5T2 |
| 83 | 1−513.T+5.71e5T2 |
| 89 | 1−543.T+7.04e5T2 |
| 97 | 1+1.86e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.09283125001758694192565456948, −10.80223475511244050995761026133, −9.592529723979436201608869094205, −9.183737465872716343535020810613, −8.556627141196053326647380862039, −7.37911752003919553288537713499, −6.75822527144168371605956012013, −3.94033848476198873690756859061, −2.57098019204571101580261907459, −1.31829429226928772840387860829,
1.31829429226928772840387860829, 2.57098019204571101580261907459, 3.94033848476198873690756859061, 6.75822527144168371605956012013, 7.37911752003919553288537713499, 8.556627141196053326647380862039, 9.183737465872716343535020810613, 9.592529723979436201608869094205, 10.80223475511244050995761026133, 12.09283125001758694192565456948