Properties

Label 2-175-1.1-c3-0-11
Degree 22
Conductor 175175
Sign 11
Analytic cond. 10.325310.3253
Root an. cond. 3.213303.21330
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.84·2-s + 9.58·3-s + 15.4·4-s − 46.3·6-s − 7·7-s − 36.0·8-s + 64.7·9-s + 62.1·11-s + 147.·12-s − 14.0·13-s + 33.8·14-s + 50.9·16-s − 63.5·17-s − 313.·18-s + 48.7·19-s − 67.0·21-s − 301.·22-s + 99.3·23-s − 345.·24-s + 68.2·26-s + 362.·27-s − 108.·28-s − 69.0·29-s − 9.68·31-s + 41.7·32-s + 595.·33-s + 307.·34-s + ⋯
L(s)  = 1  − 1.71·2-s + 1.84·3-s + 1.93·4-s − 3.15·6-s − 0.377·7-s − 1.59·8-s + 2.39·9-s + 1.70·11-s + 3.55·12-s − 0.300·13-s + 0.646·14-s + 0.795·16-s − 0.906·17-s − 4.10·18-s + 0.588·19-s − 0.696·21-s − 2.91·22-s + 0.900·23-s − 2.93·24-s + 0.514·26-s + 2.58·27-s − 0.729·28-s − 0.442·29-s − 0.0561·31-s + 0.230·32-s + 3.14·33-s + 1.55·34-s + ⋯

Functional equation

Λ(s)=(175s/2ΓC(s)L(s)=(Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}
Λ(s)=(175s/2ΓC(s+3/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 175175    =    5275^{2} \cdot 7
Sign: 11
Analytic conductor: 10.325310.3253
Root analytic conductor: 3.213303.21330
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 175, ( :3/2), 1)(2,\ 175,\ (\ :3/2),\ 1)

Particular Values

L(2)L(2) \approx 1.5440929441.544092944
L(12)L(\frac12) \approx 1.5440929441.544092944
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
7 1+7T 1 + 7T
good2 1+4.84T+8T2 1 + 4.84T + 8T^{2}
3 19.58T+27T2 1 - 9.58T + 27T^{2}
11 162.1T+1.33e3T2 1 - 62.1T + 1.33e3T^{2}
13 1+14.0T+2.19e3T2 1 + 14.0T + 2.19e3T^{2}
17 1+63.5T+4.91e3T2 1 + 63.5T + 4.91e3T^{2}
19 148.7T+6.85e3T2 1 - 48.7T + 6.85e3T^{2}
23 199.3T+1.21e4T2 1 - 99.3T + 1.21e4T^{2}
29 1+69.0T+2.43e4T2 1 + 69.0T + 2.43e4T^{2}
31 1+9.68T+2.97e4T2 1 + 9.68T + 2.97e4T^{2}
37 1+240.T+5.06e4T2 1 + 240.T + 5.06e4T^{2}
41 1335.T+6.89e4T2 1 - 335.T + 6.89e4T^{2}
43 1+51.2T+7.95e4T2 1 + 51.2T + 7.95e4T^{2}
47 1451.T+1.03e5T2 1 - 451.T + 1.03e5T^{2}
53 1180.T+1.48e5T2 1 - 180.T + 1.48e5T^{2}
59 1268.T+2.05e5T2 1 - 268.T + 2.05e5T^{2}
61 1+323.T+2.26e5T2 1 + 323.T + 2.26e5T^{2}
67 1541.T+3.00e5T2 1 - 541.T + 3.00e5T^{2}
71 1+161.T+3.57e5T2 1 + 161.T + 3.57e5T^{2}
73 1+305.T+3.89e5T2 1 + 305.T + 3.89e5T^{2}
79 1+504.T+4.93e5T2 1 + 504.T + 4.93e5T^{2}
83 1513.T+5.71e5T2 1 - 513.T + 5.71e5T^{2}
89 1543.T+7.04e5T2 1 - 543.T + 7.04e5T^{2}
97 1+1.86e3T+9.12e5T2 1 + 1.86e3T + 9.12e5T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.09283125001758694192565456948, −10.80223475511244050995761026133, −9.592529723979436201608869094205, −9.183737465872716343535020810613, −8.556627141196053326647380862039, −7.37911752003919553288537713499, −6.75822527144168371605956012013, −3.94033848476198873690756859061, −2.57098019204571101580261907459, −1.31829429226928772840387860829, 1.31829429226928772840387860829, 2.57098019204571101580261907459, 3.94033848476198873690756859061, 6.75822527144168371605956012013, 7.37911752003919553288537713499, 8.556627141196053326647380862039, 9.183737465872716343535020810613, 9.592529723979436201608869094205, 10.80223475511244050995761026133, 12.09283125001758694192565456948

Graph of the ZZ-function along the critical line