Properties

Label 2-175-1.1-c3-0-10
Degree $2$
Conductor $175$
Sign $1$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 8·3-s − 7·4-s − 8·6-s − 7·7-s + 15·8-s + 37·9-s + 12·11-s − 56·12-s + 78·13-s + 7·14-s + 41·16-s + 94·17-s − 37·18-s + 40·19-s − 56·21-s − 12·22-s − 32·23-s + 120·24-s − 78·26-s + 80·27-s + 49·28-s − 50·29-s − 248·31-s − 161·32-s + 96·33-s − 94·34-s + ⋯
L(s)  = 1  − 0.353·2-s + 1.53·3-s − 7/8·4-s − 0.544·6-s − 0.377·7-s + 0.662·8-s + 1.37·9-s + 0.328·11-s − 1.34·12-s + 1.66·13-s + 0.133·14-s + 0.640·16-s + 1.34·17-s − 0.484·18-s + 0.482·19-s − 0.581·21-s − 0.116·22-s − 0.290·23-s + 1.02·24-s − 0.588·26-s + 0.570·27-s + 0.330·28-s − 0.320·29-s − 1.43·31-s − 0.889·32-s + 0.506·33-s − 0.474·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.095444940\)
\(L(\frac12)\) \(\approx\) \(2.095444940\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 + p T \)
good2 \( 1 + T + p^{3} T^{2} \)
3 \( 1 - 8 T + p^{3} T^{2} \)
11 \( 1 - 12 T + p^{3} T^{2} \)
13 \( 1 - 6 p T + p^{3} T^{2} \)
17 \( 1 - 94 T + p^{3} T^{2} \)
19 \( 1 - 40 T + p^{3} T^{2} \)
23 \( 1 + 32 T + p^{3} T^{2} \)
29 \( 1 + 50 T + p^{3} T^{2} \)
31 \( 1 + 8 p T + p^{3} T^{2} \)
37 \( 1 - 434 T + p^{3} T^{2} \)
41 \( 1 - 402 T + p^{3} T^{2} \)
43 \( 1 - 68 T + p^{3} T^{2} \)
47 \( 1 + 536 T + p^{3} T^{2} \)
53 \( 1 + 22 T + p^{3} T^{2} \)
59 \( 1 + 560 T + p^{3} T^{2} \)
61 \( 1 + 278 T + p^{3} T^{2} \)
67 \( 1 - 164 T + p^{3} T^{2} \)
71 \( 1 - 672 T + p^{3} T^{2} \)
73 \( 1 + 82 T + p^{3} T^{2} \)
79 \( 1 + 1000 T + p^{3} T^{2} \)
83 \( 1 - 448 T + p^{3} T^{2} \)
89 \( 1 + 870 T + p^{3} T^{2} \)
97 \( 1 + 1026 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.69551318958635373038341377079, −11.03883557541485018602384750904, −9.694672046690131244583399120674, −9.258248143118897162077758202479, −8.268671407679627604996565551323, −7.60368248294959681558600152727, −5.85222442009799353217035975865, −4.04989709957727718247483837114, −3.25436067910591054760461208736, −1.30528193135988779285210397147, 1.30528193135988779285210397147, 3.25436067910591054760461208736, 4.04989709957727718247483837114, 5.85222442009799353217035975865, 7.60368248294959681558600152727, 8.268671407679627604996565551323, 9.258248143118897162077758202479, 9.694672046690131244583399120674, 11.03883557541485018602384750904, 12.69551318958635373038341377079

Graph of the $Z$-function along the critical line