L(s) = 1 | − 2-s + 8·3-s − 7·4-s − 8·6-s − 7·7-s + 15·8-s + 37·9-s + 12·11-s − 56·12-s + 78·13-s + 7·14-s + 41·16-s + 94·17-s − 37·18-s + 40·19-s − 56·21-s − 12·22-s − 32·23-s + 120·24-s − 78·26-s + 80·27-s + 49·28-s − 50·29-s − 248·31-s − 161·32-s + 96·33-s − 94·34-s + ⋯ |
L(s) = 1 | − 0.353·2-s + 1.53·3-s − 7/8·4-s − 0.544·6-s − 0.377·7-s + 0.662·8-s + 1.37·9-s + 0.328·11-s − 1.34·12-s + 1.66·13-s + 0.133·14-s + 0.640·16-s + 1.34·17-s − 0.484·18-s + 0.482·19-s − 0.581·21-s − 0.116·22-s − 0.290·23-s + 1.02·24-s − 0.588·26-s + 0.570·27-s + 0.330·28-s − 0.320·29-s − 1.43·31-s − 0.889·32-s + 0.506·33-s − 0.474·34-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.095444940 |
L(21) |
≈ |
2.095444940 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1+pT |
good | 2 | 1+T+p3T2 |
| 3 | 1−8T+p3T2 |
| 11 | 1−12T+p3T2 |
| 13 | 1−6pT+p3T2 |
| 17 | 1−94T+p3T2 |
| 19 | 1−40T+p3T2 |
| 23 | 1+32T+p3T2 |
| 29 | 1+50T+p3T2 |
| 31 | 1+8pT+p3T2 |
| 37 | 1−434T+p3T2 |
| 41 | 1−402T+p3T2 |
| 43 | 1−68T+p3T2 |
| 47 | 1+536T+p3T2 |
| 53 | 1+22T+p3T2 |
| 59 | 1+560T+p3T2 |
| 61 | 1+278T+p3T2 |
| 67 | 1−164T+p3T2 |
| 71 | 1−672T+p3T2 |
| 73 | 1+82T+p3T2 |
| 79 | 1+1000T+p3T2 |
| 83 | 1−448T+p3T2 |
| 89 | 1+870T+p3T2 |
| 97 | 1+1026T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.69551318958635373038341377079, −11.03883557541485018602384750904, −9.694672046690131244583399120674, −9.258248143118897162077758202479, −8.268671407679627604996565551323, −7.60368248294959681558600152727, −5.85222442009799353217035975865, −4.04989709957727718247483837114, −3.25436067910591054760461208736, −1.30528193135988779285210397147,
1.30528193135988779285210397147, 3.25436067910591054760461208736, 4.04989709957727718247483837114, 5.85222442009799353217035975865, 7.60368248294959681558600152727, 8.268671407679627604996565551323, 9.258248143118897162077758202479, 9.694672046690131244583399120674, 11.03883557541485018602384750904, 12.69551318958635373038341377079