Properties

Label 2-175-1.1-c3-0-0
Degree $2$
Conductor $175$
Sign $1$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.53·2-s − 6.46·3-s + 12.5·4-s + 29.3·6-s − 7·7-s − 20.7·8-s + 14.8·9-s − 54.0·11-s − 81.2·12-s − 75.2·13-s + 31.7·14-s − 6.60·16-s + 71.2·17-s − 67.1·18-s − 65.5·19-s + 45.2·21-s + 245.·22-s − 125.·23-s + 133.·24-s + 341.·26-s + 78.8·27-s − 87.9·28-s + 190.·29-s − 193.·31-s + 195.·32-s + 349.·33-s − 323.·34-s + ⋯
L(s)  = 1  − 1.60·2-s − 1.24·3-s + 1.57·4-s + 1.99·6-s − 0.377·7-s − 0.915·8-s + 0.548·9-s − 1.48·11-s − 1.95·12-s − 1.60·13-s + 0.606·14-s − 0.103·16-s + 1.01·17-s − 0.879·18-s − 0.791·19-s + 0.470·21-s + 2.37·22-s − 1.13·23-s + 1.13·24-s + 2.57·26-s + 0.561·27-s − 0.593·28-s + 1.21·29-s − 1.11·31-s + 1.08·32-s + 1.84·33-s − 1.62·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1786143992\)
\(L(\frac12)\) \(\approx\) \(0.1786143992\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 + 7T \)
good2 \( 1 + 4.53T + 8T^{2} \)
3 \( 1 + 6.46T + 27T^{2} \)
11 \( 1 + 54.0T + 1.33e3T^{2} \)
13 \( 1 + 75.2T + 2.19e3T^{2} \)
17 \( 1 - 71.2T + 4.91e3T^{2} \)
19 \( 1 + 65.5T + 6.85e3T^{2} \)
23 \( 1 + 125.T + 1.21e4T^{2} \)
29 \( 1 - 190.T + 2.43e4T^{2} \)
31 \( 1 + 193.T + 2.97e4T^{2} \)
37 \( 1 + 114.T + 5.06e4T^{2} \)
41 \( 1 - 216.T + 6.89e4T^{2} \)
43 \( 1 - 413.T + 7.95e4T^{2} \)
47 \( 1 - 113.T + 1.03e5T^{2} \)
53 \( 1 + 584.T + 1.48e5T^{2} \)
59 \( 1 - 203.T + 2.05e5T^{2} \)
61 \( 1 + 162.T + 2.26e5T^{2} \)
67 \( 1 + 477.T + 3.00e5T^{2} \)
71 \( 1 - 822.T + 3.57e5T^{2} \)
73 \( 1 - 798.T + 3.89e5T^{2} \)
79 \( 1 + 468.T + 4.93e5T^{2} \)
83 \( 1 - 310.T + 5.71e5T^{2} \)
89 \( 1 - 1.31e3T + 7.04e5T^{2} \)
97 \( 1 - 1.31e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.05721915596762340547820366333, −10.78951683301677361574757102354, −10.33440152613894276378283363696, −9.489585506418059313684330542014, −8.063514353850715638176607023040, −7.31327697550779981426658038184, −6.07923502038472262505001794579, −4.93650334657927347687269860537, −2.42601663334762778329942701282, −0.41960715885990573395412704509, 0.41960715885990573395412704509, 2.42601663334762778329942701282, 4.93650334657927347687269860537, 6.07923502038472262505001794579, 7.31327697550779981426658038184, 8.063514353850715638176607023040, 9.489585506418059313684330542014, 10.33440152613894276378283363696, 10.78951683301677361574757102354, 12.05721915596762340547820366333

Graph of the $Z$-function along the critical line