| L(s) = 1 | + (0.707 − 0.707i)2-s + (−0.965 − 0.258i)3-s − 1.00i·4-s + (−0.5 + 0.866i)5-s + (−0.866 + 0.500i)6-s + (−0.707 − 0.707i)8-s + (0.866 + 0.499i)9-s + (0.258 + 0.965i)10-s + 0.517i·11-s + (−0.258 + 0.965i)12-s + (1.36 − 1.36i)13-s + (0.707 − 0.707i)15-s − 1.00·16-s + (0.965 − 0.258i)18-s − 1.41i·19-s + (0.866 + 0.500i)20-s + ⋯ |
| L(s) = 1 | + (0.707 − 0.707i)2-s + (−0.965 − 0.258i)3-s − 1.00i·4-s + (−0.5 + 0.866i)5-s + (−0.866 + 0.500i)6-s + (−0.707 − 0.707i)8-s + (0.866 + 0.499i)9-s + (0.258 + 0.965i)10-s + 0.517i·11-s + (−0.258 + 0.965i)12-s + (1.36 − 1.36i)13-s + (0.707 − 0.707i)15-s − 1.00·16-s + (0.965 − 0.258i)18-s − 1.41i·19-s + (0.866 + 0.500i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.086783842\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.086783842\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 + (0.965 + 0.258i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 29 | \( 1 - T \) |
| good | 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 - 0.517iT - T^{2} \) |
| 13 | \( 1 + (-1.36 + 1.36i)T - iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + 1.41iT - T^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 31 | \( 1 + 0.517T + T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (-1.22 + 1.22i)T - iT^{2} \) |
| 47 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 53 | \( 1 + (1.36 + 1.36i)T + iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 - 1.93iT - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.657796979571782503613919031819, −8.473392860679795706226785812103, −7.38755849148147678898825993087, −6.69081341996871401206159788725, −5.97335040701597973986289136219, −5.18014681373949497653088573181, −4.25327111755079999250565386943, −3.35886995995377478317577523114, −2.34291945855989740882367145793, −0.838503811596861825361560945665,
1.43586068561049248695915439248, 3.47244407685403312796160907920, 4.18493898588739507400545474907, 4.74723220978696875455658568045, 5.95474549393931669110794014553, 6.08780198951945544420019963803, 7.20513471746200032764615381903, 8.073952656507309344940773190610, 8.815018724242923303950302729264, 9.497788696431433925358363917421