| L(s) = 1 | + (−0.707 + 0.707i)2-s + (0.965 + 0.258i)3-s − 1.00i·4-s + (−0.5 + 0.866i)5-s + (−0.866 + 0.500i)6-s + (0.707 + 0.707i)8-s + (0.866 + 0.499i)9-s + (−0.258 − 0.965i)10-s − 0.517i·11-s + (0.258 − 0.965i)12-s + (1.36 − 1.36i)13-s + (−0.707 + 0.707i)15-s − 1.00·16-s + (−0.965 + 0.258i)18-s + 1.41i·19-s + (0.866 + 0.500i)20-s + ⋯ |
| L(s) = 1 | + (−0.707 + 0.707i)2-s + (0.965 + 0.258i)3-s − 1.00i·4-s + (−0.5 + 0.866i)5-s + (−0.866 + 0.500i)6-s + (0.707 + 0.707i)8-s + (0.866 + 0.499i)9-s + (−0.258 − 0.965i)10-s − 0.517i·11-s + (0.258 − 0.965i)12-s + (1.36 − 1.36i)13-s + (−0.707 + 0.707i)15-s − 1.00·16-s + (−0.965 + 0.258i)18-s + 1.41i·19-s + (0.866 + 0.500i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.229 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.229 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.100118759\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.100118759\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 + (-0.965 - 0.258i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 29 | \( 1 - T \) |
| good | 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + 0.517iT - T^{2} \) |
| 13 | \( 1 + (-1.36 + 1.36i)T - iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 - 1.41iT - T^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 31 | \( 1 - 0.517T + T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (1.22 - 1.22i)T - iT^{2} \) |
| 47 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 53 | \( 1 + (1.36 + 1.36i)T + iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + 1.93iT - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.653307023861136877386235540679, −8.534532384821488478461238177963, −8.090865100904366959036528354496, −7.72118562994037220679854086818, −6.50589032390008631793884529893, −6.01709356966253001520038587948, −4.76472735479220015593748014203, −3.58876636408243406882430936914, −2.93739802901532500929982336882, −1.42102008804650074646400752708,
1.17654470838793353186971995529, 2.08749309471942615241661129992, 3.28295562416785701597970150050, 4.12822176593897267908685090859, 4.76796261795818881804319049977, 6.62177527530703877729981099986, 7.11665935546558348038615293504, 8.221336948596840343416919075697, 8.583414417162089165668108904244, 9.199272734735406085247546194141