L(s) = 1 | + (0.532 + 0.846i)2-s + (−0.846 − 0.532i)3-s + (−0.433 + 0.900i)4-s + (−0.222 + 0.974i)5-s − i·6-s + (−0.595 + 0.286i)7-s + (−0.993 + 0.111i)8-s + (0.433 + 0.900i)9-s + (−0.943 + 0.330i)10-s + (0.846 − 0.532i)12-s + (−0.559 − 0.351i)14-s + (0.707 − 0.707i)15-s + (−0.623 − 0.781i)16-s + (−0.532 + 0.846i)18-s + (−0.781 − 0.623i)20-s + (0.656 + 0.0739i)21-s + ⋯ |
L(s) = 1 | + (0.532 + 0.846i)2-s + (−0.846 − 0.532i)3-s + (−0.433 + 0.900i)4-s + (−0.222 + 0.974i)5-s − i·6-s + (−0.595 + 0.286i)7-s + (−0.993 + 0.111i)8-s + (0.433 + 0.900i)9-s + (−0.943 + 0.330i)10-s + (0.846 − 0.532i)12-s + (−0.559 − 0.351i)14-s + (0.707 − 0.707i)15-s + (−0.623 − 0.781i)16-s + (−0.532 + 0.846i)18-s + (−0.781 − 0.623i)20-s + (0.656 + 0.0739i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.895 + 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.895 + 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4691111561\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4691111561\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.532 - 0.846i)T \) |
| 3 | \( 1 + (0.846 + 0.532i)T \) |
| 5 | \( 1 + (0.222 - 0.974i)T \) |
| 29 | \( 1 + (0.900 - 0.433i)T \) |
good | 7 | \( 1 + (0.595 - 0.286i)T + (0.623 - 0.781i)T^{2} \) |
| 11 | \( 1 + (-0.974 - 0.222i)T^{2} \) |
| 13 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + (0.781 - 0.623i)T^{2} \) |
| 23 | \( 1 + (1.65 - 0.376i)T + (0.900 - 0.433i)T^{2} \) |
| 31 | \( 1 + (-0.433 + 0.900i)T^{2} \) |
| 37 | \( 1 + (0.974 - 0.222i)T^{2} \) |
| 41 | \( 1 + (-0.158 - 0.158i)T + iT^{2} \) |
| 43 | \( 1 + (-0.663 + 1.05i)T + (-0.433 - 0.900i)T^{2} \) |
| 47 | \( 1 + (0.0971 - 0.862i)T + (-0.974 - 0.222i)T^{2} \) |
| 53 | \( 1 + (-0.900 - 0.433i)T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + (1.33 + 0.467i)T + (0.781 + 0.623i)T^{2} \) |
| 67 | \( 1 + (1.10 + 0.881i)T + (0.222 + 0.974i)T^{2} \) |
| 71 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 73 | \( 1 + (-0.433 - 0.900i)T^{2} \) |
| 79 | \( 1 + (-0.974 + 0.222i)T^{2} \) |
| 83 | \( 1 + (0.862 - 1.79i)T + (-0.623 - 0.781i)T^{2} \) |
| 89 | \( 1 + (-1.00 - 1.59i)T + (-0.433 + 0.900i)T^{2} \) |
| 97 | \( 1 + (-0.781 + 0.623i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.962335104669977269207511795885, −9.082470597713893878306599352852, −7.80943608954817649801741301221, −7.54669748496685851146490312874, −6.52884905551170815758485714190, −6.14368656727865957950755532882, −5.40291087833208038146624361486, −4.26585142495085827923821128241, −3.36873977710693800400460970707, −2.22174066818339001989796204113,
0.32041085711524132258861979827, 1.74389766448640885259457827645, 3.31870298196665659203483510600, 4.18080008049729548640368799035, 4.65841682806612252048419873245, 5.76884067590491060110861523267, 6.11113575832152632033329561038, 7.38563737077622741807297536707, 8.593353707639087477309795208906, 9.370498472602403710285334849529