| L(s) = 1 | + (0.532 − 0.846i)2-s + (0.993 − 0.111i)3-s + (−0.433 − 0.900i)4-s + (0.222 + 0.974i)5-s + (0.433 − 0.900i)6-s + (0.595 + 0.286i)7-s + (−0.993 − 0.111i)8-s + (0.974 − 0.222i)9-s + (0.943 + 0.330i)10-s + (−0.532 − 0.846i)12-s + (0.559 − 0.351i)14-s + (0.330 + 0.943i)15-s + (−0.623 + 0.781i)16-s + (0.330 − 0.943i)18-s + (0.781 − 0.623i)20-s + (0.623 + 0.218i)21-s + ⋯ |
| L(s) = 1 | + (0.532 − 0.846i)2-s + (0.993 − 0.111i)3-s + (−0.433 − 0.900i)4-s + (0.222 + 0.974i)5-s + (0.433 − 0.900i)6-s + (0.595 + 0.286i)7-s + (−0.993 − 0.111i)8-s + (0.974 − 0.222i)9-s + (0.943 + 0.330i)10-s + (−0.532 − 0.846i)12-s + (0.559 − 0.351i)14-s + (0.330 + 0.943i)15-s + (−0.623 + 0.781i)16-s + (0.330 − 0.943i)18-s + (0.781 − 0.623i)20-s + (0.623 + 0.218i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.613 + 0.789i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.613 + 0.789i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.096007623\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.096007623\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.532 + 0.846i)T \) |
| 3 | \( 1 + (-0.993 + 0.111i)T \) |
| 5 | \( 1 + (-0.222 - 0.974i)T \) |
| 29 | \( 1 + (-0.900 - 0.433i)T \) |
| good | 7 | \( 1 + (-0.595 - 0.286i)T + (0.623 + 0.781i)T^{2} \) |
| 11 | \( 1 + (-0.974 + 0.222i)T^{2} \) |
| 13 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + (0.781 + 0.623i)T^{2} \) |
| 23 | \( 1 + (1.65 + 0.376i)T + (0.900 + 0.433i)T^{2} \) |
| 31 | \( 1 + (-0.433 - 0.900i)T^{2} \) |
| 37 | \( 1 + (0.974 + 0.222i)T^{2} \) |
| 41 | \( 1 + (0.158 - 0.158i)T - iT^{2} \) |
| 43 | \( 1 + (0.663 + 1.05i)T + (-0.433 + 0.900i)T^{2} \) |
| 47 | \( 1 + (0.0971 + 0.862i)T + (-0.974 + 0.222i)T^{2} \) |
| 53 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + (1.33 - 0.467i)T + (0.781 - 0.623i)T^{2} \) |
| 67 | \( 1 + (-1.10 + 0.881i)T + (0.222 - 0.974i)T^{2} \) |
| 71 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 73 | \( 1 + (-0.433 + 0.900i)T^{2} \) |
| 79 | \( 1 + (-0.974 - 0.222i)T^{2} \) |
| 83 | \( 1 + (0.862 + 1.79i)T + (-0.623 + 0.781i)T^{2} \) |
| 89 | \( 1 + (1.00 - 1.59i)T + (-0.433 - 0.900i)T^{2} \) |
| 97 | \( 1 + (-0.781 - 0.623i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.602487677370379377657836927747, −8.651402524167986793157458458025, −8.005833525614887619706019264082, −6.92230764610366839791747995588, −6.17749522888348965461900195901, −5.11105369148976515338808855935, −4.09817315736414361565262204626, −3.32225190361947949223335008935, −2.40934874055257219957072311253, −1.72755683829310083514998958644,
1.63958345341123962428781799130, 2.91612436592960410713030223572, 4.13516498236376735028673224285, 4.50828013283647984939192016867, 5.48560061363057781471100176774, 6.40430533847403254784558816639, 7.44946563701896806157106704151, 8.212793082354598036311940208442, 8.389650809903988190245516612878, 9.497009456831723252601365584738