L(s) = 1 | + (0.707 + 0.707i)2-s + (−0.258 + 0.965i)3-s + 1.00i·4-s + (0.5 + 0.866i)5-s + (−0.866 + 0.500i)6-s + (−0.707 + 0.707i)8-s + (−0.866 − 0.499i)9-s + (−0.258 + 0.965i)10-s − 0.517i·11-s + (−0.965 − 0.258i)12-s + (1.36 + 1.36i)13-s + (−0.965 + 0.258i)15-s − 1.00·16-s + (−0.258 − 0.965i)18-s − 1.41i·19-s + (−0.866 + 0.500i)20-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + (−0.258 + 0.965i)3-s + 1.00i·4-s + (0.5 + 0.866i)5-s + (−0.866 + 0.500i)6-s + (−0.707 + 0.707i)8-s + (−0.866 − 0.499i)9-s + (−0.258 + 0.965i)10-s − 0.517i·11-s + (−0.965 − 0.258i)12-s + (1.36 + 1.36i)13-s + (−0.965 + 0.258i)15-s − 1.00·16-s + (−0.258 − 0.965i)18-s − 1.41i·19-s + (−0.866 + 0.500i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.957 - 0.287i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.957 - 0.287i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.579968784\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.579968784\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 + (0.258 - 0.965i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + T \) |
good | 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + 0.517iT - T^{2} \) |
| 13 | \( 1 + (-1.36 - 1.36i)T + iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + 1.41iT - T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 31 | \( 1 - 0.517T + T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (1.22 + 1.22i)T + iT^{2} \) |
| 47 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 53 | \( 1 + (-1.36 + 1.36i)T - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 - 1.93iT - T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.759771920783640878196891757360, −8.936806609429264896536469107170, −8.481447794668702494787337781650, −7.06588769674963873759200157601, −6.56617722475777760984529329007, −5.82494869363334984069385051649, −5.07910840808459341985366067971, −3.99707675676671452261006800081, −3.46262817259230496020142211411, −2.34755244184361478723333636946,
1.07581276732276529808522626315, 1.83031353901386795734633010848, 3.03322902411396588563828602995, 4.10270677474323177260831299459, 5.23902436820434293308711956847, 5.82367980337799468959254648432, 6.32457773736774503365693445836, 7.61435597535467054227279573789, 8.359179424698103105905091874919, 9.173179984170486519052554524466