L(s) = 1 | − i·3-s + (0.0712 + 2.23i)5-s + (−0.799 − 0.799i)7-s − 9-s + (−0.319 + 0.319i)11-s + (1.26 + 1.26i)13-s + (2.23 − 0.0712i)15-s − 3.94·17-s + (2.75 + 2.75i)19-s + (−0.799 + 0.799i)21-s + (0.270 − 0.270i)23-s + (−4.98 + 0.318i)25-s + i·27-s + (0.120 − 5.38i)29-s + (−3.45 + 3.45i)31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (0.0318 + 0.999i)5-s + (−0.302 − 0.302i)7-s − 0.333·9-s + (−0.0963 + 0.0963i)11-s + (0.351 + 0.351i)13-s + (0.577 − 0.0183i)15-s − 0.957·17-s + (0.633 + 0.633i)19-s + (−0.174 + 0.174i)21-s + (0.0564 − 0.0564i)23-s + (−0.997 + 0.0636i)25-s + 0.192i·27-s + (0.0224 − 0.999i)29-s + (−0.619 + 0.619i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.364 - 0.931i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.364 - 0.931i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8877699615\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8877699615\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 + (-0.0712 - 2.23i)T \) |
| 29 | \( 1 + (-0.120 + 5.38i)T \) |
good | 7 | \( 1 + (0.799 + 0.799i)T + 7iT^{2} \) |
| 11 | \( 1 + (0.319 - 0.319i)T - 11iT^{2} \) |
| 13 | \( 1 + (-1.26 - 1.26i)T + 13iT^{2} \) |
| 17 | \( 1 + 3.94T + 17T^{2} \) |
| 19 | \( 1 + (-2.75 - 2.75i)T + 19iT^{2} \) |
| 23 | \( 1 + (-0.270 + 0.270i)T - 23iT^{2} \) |
| 31 | \( 1 + (3.45 - 3.45i)T - 31iT^{2} \) |
| 37 | \( 1 - 9.42iT - 37T^{2} \) |
| 41 | \( 1 + (5.22 + 5.22i)T + 41iT^{2} \) |
| 43 | \( 1 - 9.82iT - 43T^{2} \) |
| 47 | \( 1 - 5.91iT - 47T^{2} \) |
| 53 | \( 1 + (3.04 - 3.04i)T - 53iT^{2} \) |
| 59 | \( 1 - 3.40iT - 59T^{2} \) |
| 61 | \( 1 + (8.02 - 8.02i)T - 61iT^{2} \) |
| 67 | \( 1 + (2.10 - 2.10i)T - 67iT^{2} \) |
| 71 | \( 1 - 4.89iT - 71T^{2} \) |
| 73 | \( 1 - 1.74T + 73T^{2} \) |
| 79 | \( 1 + (-2.41 - 2.41i)T + 79iT^{2} \) |
| 83 | \( 1 + (1.43 - 1.43i)T - 83iT^{2} \) |
| 89 | \( 1 + (6.19 + 6.19i)T + 89iT^{2} \) |
| 97 | \( 1 + 3.50iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.662912059021354313164931299294, −8.682447720203994219219108840650, −7.82875966911018073742279938118, −7.09610255655956490910435738548, −6.47967852563195767532247330158, −5.80606379001425816007509700924, −4.53109160023900107415574967486, −3.49919597537884952555126396981, −2.64630618672715098088495296078, −1.50586986630695009211615475997,
0.32493831267994710394086151666, 1.90319027909331327517005101183, 3.18203142485058636023645884265, 4.09835862864191388039400310937, 5.04433804898810125236896485610, 5.57864202602923411744539687716, 6.58063878153319838019316762074, 7.61282653361613586103115826022, 8.534411292264736344403770206884, 9.115991113616938839976319952406