L(s) = 1 | + (−0.370 − 0.642i)2-s + (0.724 − 1.25i)4-s + (1.65 + 2.85i)5-s + 1.44·7-s − 2.55·8-s + (1.22 − 2.12i)10-s + 1.81·11-s + (0.5 − 0.866i)13-s + (−0.537 − 0.931i)14-s + (−0.499 − 0.866i)16-s + (−3.30 − 5.71i)17-s + (1 + 4.24i)19-s + 4.78·20-s + (−0.674 − 1.16i)22-s + (2.39 − 4.14i)23-s + ⋯ |
L(s) = 1 | + (−0.262 − 0.454i)2-s + (0.362 − 0.627i)4-s + (0.738 + 1.27i)5-s + 0.547·7-s − 0.904·8-s + (0.387 − 0.670i)10-s + 0.547·11-s + (0.138 − 0.240i)13-s + (−0.143 − 0.248i)14-s + (−0.124 − 0.216i)16-s + (−0.800 − 1.38i)17-s + (0.229 + 0.973i)19-s + 1.07·20-s + (−0.143 − 0.248i)22-s + (0.498 − 0.864i)23-s + ⋯ |
Λ(s)=(=(171s/2ΓC(s)L(s)(0.875+0.483i)Λ(2−s)
Λ(s)=(=(171s/2ΓC(s+1/2)L(s)(0.875+0.483i)Λ(1−s)
Degree: |
2 |
Conductor: |
171
= 32⋅19
|
Sign: |
0.875+0.483i
|
Analytic conductor: |
1.36544 |
Root analytic conductor: |
1.16852 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ171(64,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 171, ( :1/2), 0.875+0.483i)
|
Particular Values
L(1) |
≈ |
1.19409−0.308067i |
L(21) |
≈ |
1.19409−0.308067i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 19 | 1+(−1−4.24i)T |
good | 2 | 1+(0.370+0.642i)T+(−1+1.73i)T2 |
| 5 | 1+(−1.65−2.85i)T+(−2.5+4.33i)T2 |
| 7 | 1−1.44T+7T2 |
| 11 | 1−1.81T+11T2 |
| 13 | 1+(−0.5+0.866i)T+(−6.5−11.2i)T2 |
| 17 | 1+(3.30+5.71i)T+(−8.5+14.7i)T2 |
| 23 | 1+(−2.39+4.14i)T+(−11.5−19.9i)T2 |
| 29 | 1+(4.78−8.28i)T+(−14.5−25.1i)T2 |
| 31 | 1+4.55T+31T2 |
| 37 | 1+5.89T+37T2 |
| 41 | 1+(1.48+2.57i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−4.17−7.22i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−1.48+2.57i)T+(−23.5−40.7i)T2 |
| 53 | 1+(1.65−2.85i)T+(−26.5−45.8i)T2 |
| 59 | 1+(4.21+7.29i)T+(−29.5+51.0i)T2 |
| 61 | 1+(2.5−4.33i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−7.17+12.4i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−4.78−8.28i)T+(−35.5+61.4i)T2 |
| 73 | 1+(2.5+4.33i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−7.17−12.4i)T+(−39.5+68.4i)T2 |
| 83 | 1+3.63T+83T2 |
| 89 | 1+(−8.25+14.2i)T+(−44.5−77.0i)T2 |
| 97 | 1+(6.44+11.1i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.48770230757098761678731620228, −11.20721183171400175481411858604, −10.87373539783600939498392576555, −9.846355497656934285992104771347, −8.971888544030087968661550512881, −7.21465936273925763301072800598, −6.41154737491163570596525498977, −5.24330761978999811517949769637, −3.13451600143324871986974396707, −1.85505864880742908792514435663,
1.87374757507543874498583370423, 4.01353707060061123016859263813, 5.40587237188096489899156098875, 6.53121004477192396556870709719, 7.81434876985752383896705223528, 8.832629028797874100892133635096, 9.323986813993517024613524527837, 11.00542243849056830576402305384, 11.92156717309070714521305227565, 12.92941540116239980597959495710