L(s) = 1 | + (1.16 − 2.02i)2-s + (−1.72 − 2.98i)4-s + (0.524 − 0.908i)5-s − 3.44·7-s − 3.38·8-s + (−1.22 − 2.12i)10-s + 5.71·11-s + (0.5 + 0.866i)13-s + (−4.02 + 6.97i)14-s + (−0.500 + 0.866i)16-s + (−1.04 + 1.81i)17-s + (1 + 4.24i)19-s − 3.61·20-s + (6.67 − 11.5i)22-s + (−1.80 − 3.13i)23-s + ⋯ |
L(s) = 1 | + (0.825 − 1.42i)2-s + (−0.862 − 1.49i)4-s + (0.234 − 0.406i)5-s − 1.30·7-s − 1.19·8-s + (−0.387 − 0.670i)10-s + 1.72·11-s + (0.138 + 0.240i)13-s + (−1.07 + 1.86i)14-s + (−0.125 + 0.216i)16-s + (−0.254 + 0.440i)17-s + (0.229 + 0.973i)19-s − 0.809·20-s + (1.42 − 2.46i)22-s + (−0.377 − 0.653i)23-s + ⋯ |
Λ(s)=(=(171s/2ΓC(s)L(s)(−0.567+0.823i)Λ(2−s)
Λ(s)=(=(171s/2ΓC(s+1/2)L(s)(−0.567+0.823i)Λ(1−s)
Degree: |
2 |
Conductor: |
171
= 32⋅19
|
Sign: |
−0.567+0.823i
|
Analytic conductor: |
1.36544 |
Root analytic conductor: |
1.16852 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ171(163,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 171, ( :1/2), −0.567+0.823i)
|
Particular Values
L(1) |
≈ |
0.753362−1.43317i |
L(21) |
≈ |
0.753362−1.43317i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 19 | 1+(−1−4.24i)T |
good | 2 | 1+(−1.16+2.02i)T+(−1−1.73i)T2 |
| 5 | 1+(−0.524+0.908i)T+(−2.5−4.33i)T2 |
| 7 | 1+3.44T+7T2 |
| 11 | 1−5.71T+11T2 |
| 13 | 1+(−0.5−0.866i)T+(−6.5+11.2i)T2 |
| 17 | 1+(1.04−1.81i)T+(−8.5−14.7i)T2 |
| 23 | 1+(1.80+3.13i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−3.61−6.26i)T+(−14.5+25.1i)T2 |
| 31 | 1+9.44T+31T2 |
| 37 | 1−3.89T+37T2 |
| 41 | 1+(−4.66+8.08i)T+(−20.5−35.5i)T2 |
| 43 | 1+(3.17−5.49i)T+(−21.5−37.2i)T2 |
| 47 | 1+(4.66+8.08i)T+(−23.5+40.7i)T2 |
| 53 | 1+(0.524+0.908i)T+(−26.5+45.8i)T2 |
| 59 | 1+(3.90−6.76i)T+(−29.5−51.0i)T2 |
| 61 | 1+(2.5+4.33i)T+(−30.5+52.8i)T2 |
| 67 | 1+(0.174+0.301i)T+(−33.5+58.0i)T2 |
| 71 | 1+(3.61−6.26i)T+(−35.5−61.4i)T2 |
| 73 | 1+(2.5−4.33i)T+(−36.5−63.2i)T2 |
| 79 | 1+(0.174−0.301i)T+(−39.5−68.4i)T2 |
| 83 | 1+11.4T+83T2 |
| 89 | 1+(−2.62−4.54i)T+(−44.5+77.0i)T2 |
| 97 | 1+(1.55−2.68i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.53330189331524522852728494892, −11.66587319075976444966662476591, −10.58775125566395322707918686422, −9.610582587923904372606763061310, −8.929230373849495247194570113950, −6.79775061315552148733203431657, −5.69932283889306553982380002765, −4.15500534839769717008787518503, −3.33908773496856145759819457692, −1.55527538572307297230851856321,
3.27209989116301653810870929278, 4.45028810441098974392498080797, 6.05774345936676534629685546238, 6.51947197923179258827423026222, 7.44647373838757797092132209397, 8.944538258651007672583144140959, 9.763344036572334146425231920320, 11.36140530109858236375060029902, 12.54798826804145465692591500639, 13.40140601187099439317413135446