L(s) = 1 | + (−1.86 − 1.56i)2-s + (−1.40 + 1.01i)3-s + (0.684 + 3.87i)4-s + (0.0603 + 0.165i)5-s + (4.21 + 0.303i)6-s + (0.340 − 0.588i)7-s + (2.36 − 4.09i)8-s + (0.939 − 2.84i)9-s + (0.146 − 0.403i)10-s − 5.07i·11-s + (−4.89 − 4.75i)12-s + (−0.848 + 2.33i)13-s + (−1.55 + 0.566i)14-s + (−0.252 − 0.171i)15-s + (−3.41 + 1.24i)16-s + (−1.07 − 2.95i)17-s + ⋯ |
L(s) = 1 | + (−1.32 − 1.10i)2-s + (−0.810 + 0.586i)3-s + (0.342 + 1.93i)4-s + (0.0269 + 0.0741i)5-s + (1.71 + 0.123i)6-s + (0.128 − 0.222i)7-s + (0.835 − 1.44i)8-s + (0.313 − 0.949i)9-s + (0.0464 − 0.127i)10-s − 1.52i·11-s + (−1.41 − 1.37i)12-s + (−0.235 + 0.646i)13-s + (−0.416 + 0.151i)14-s + (−0.0652 − 0.0442i)15-s + (−0.854 + 0.311i)16-s + (−0.261 − 0.717i)17-s + ⋯ |
Λ(s)=(=(171s/2ΓC(s)L(s)(−0.496+0.868i)Λ(2−s)
Λ(s)=(=(171s/2ΓC(s+1/2)L(s)(−0.496+0.868i)Λ(1−s)
Degree: |
2 |
Conductor: |
171
= 32⋅19
|
Sign: |
−0.496+0.868i
|
Analytic conductor: |
1.36544 |
Root analytic conductor: |
1.16852 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ171(14,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 171, ( :1/2), −0.496+0.868i)
|
Particular Values
L(1) |
≈ |
0.193923−0.334122i |
L(21) |
≈ |
0.193923−0.334122i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.40−1.01i)T |
| 19 | 1+(0.122+4.35i)T |
good | 2 | 1+(1.86+1.56i)T+(0.347+1.96i)T2 |
| 5 | 1+(−0.0603−0.165i)T+(−3.83+3.21i)T2 |
| 7 | 1+(−0.340+0.588i)T+(−3.5−6.06i)T2 |
| 11 | 1+5.07iT−11T2 |
| 13 | 1+(0.848−2.33i)T+(−9.95−8.35i)T2 |
| 17 | 1+(1.07+2.95i)T+(−13.0+10.9i)T2 |
| 23 | 1+(0.413−0.0728i)T+(21.6−7.86i)T2 |
| 29 | 1+(−0.0433−0.245i)T+(−27.2+9.91i)T2 |
| 31 | 1+9.69iT−31T2 |
| 37 | 1+5.05iT−37T2 |
| 41 | 1+(−8.91−7.48i)T+(7.11+40.3i)T2 |
| 43 | 1+(−0.329+1.86i)T+(−40.4−14.7i)T2 |
| 47 | 1+(−0.352+0.0621i)T+(44.1−16.0i)T2 |
| 53 | 1+(4.97−4.17i)T+(9.20−52.1i)T2 |
| 59 | 1+(0.574−3.25i)T+(−55.4−20.1i)T2 |
| 61 | 1+(7.26+2.64i)T+(46.7+39.2i)T2 |
| 67 | 1+(4.89+5.83i)T+(−11.6+65.9i)T2 |
| 71 | 1+(10.2+8.56i)T+(12.3+69.9i)T2 |
| 73 | 1+(2.55−14.4i)T+(−68.5−24.9i)T2 |
| 79 | 1+(−2.04−5.61i)T+(−60.5+50.7i)T2 |
| 83 | 1+(0.844+0.487i)T+(41.5+71.8i)T2 |
| 89 | 1+(1.48+8.40i)T+(−83.6+30.4i)T2 |
| 97 | 1+(−8.73+10.4i)T+(−16.8−95.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.78144839240413789584676646943, −11.19997961892020366922926702875, −10.64635962347737243580488985825, −9.453260563393060053447497589117, −8.899395922339049933060582647526, −7.51264850693446009845468795418, −6.09475660967961523334554216699, −4.37235876670099440361746848143, −2.85959993701283800515640726211, −0.63801981691009384345949693835,
1.61202404851202775768854012557, 4.95085069437632087397836249225, 6.01709945459651121279465996065, 7.04639421125818055735995652675, 7.74159969131299684694385246220, 8.811734052246018755783881052994, 10.08518936812536544329927555064, 10.63978454178989736008884830713, 12.15110566172979926152007742560, 12.85504131036455083538718259039