L(s) = 1 | + (1.98 − 1.66i)2-s + (−0.713 − 1.57i)3-s + (0.819 − 4.64i)4-s + (−0.441 + 1.21i)5-s + (−4.04 − 1.94i)6-s + (2.16 + 3.74i)7-s + (−3.52 − 6.10i)8-s + (−1.98 + 2.25i)9-s + (1.14 + 3.14i)10-s + 2.72i·11-s + (−7.92 + 2.02i)12-s + (−1.29 − 3.55i)13-s + (10.5 + 3.83i)14-s + (2.23 − 0.169i)15-s + (−8.30 − 3.02i)16-s + (0.00982 − 0.0269i)17-s + ⋯ |
L(s) = 1 | + (1.40 − 1.17i)2-s + (−0.412 − 0.911i)3-s + (0.409 − 2.32i)4-s + (−0.197 + 0.542i)5-s + (−1.65 − 0.793i)6-s + (0.817 + 1.41i)7-s + (−1.24 − 2.15i)8-s + (−0.660 + 0.751i)9-s + (0.362 + 0.995i)10-s + 0.822i·11-s + (−2.28 + 0.584i)12-s + (−0.359 − 0.987i)13-s + (2.81 + 1.02i)14-s + (0.576 − 0.0437i)15-s + (−2.07 − 0.756i)16-s + (0.00238 − 0.00654i)17-s + ⋯ |
Λ(s)=(=(171s/2ΓC(s)L(s)(−0.424+0.905i)Λ(2−s)
Λ(s)=(=(171s/2ΓC(s+1/2)L(s)(−0.424+0.905i)Λ(1−s)
Degree: |
2 |
Conductor: |
171
= 32⋅19
|
Sign: |
−0.424+0.905i
|
Analytic conductor: |
1.36544 |
Root analytic conductor: |
1.16852 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ171(110,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 171, ( :1/2), −0.424+0.905i)
|
Particular Values
L(1) |
≈ |
1.07508−1.69099i |
L(21) |
≈ |
1.07508−1.69099i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.713+1.57i)T |
| 19 | 1+(0.236+4.35i)T |
good | 2 | 1+(−1.98+1.66i)T+(0.347−1.96i)T2 |
| 5 | 1+(0.441−1.21i)T+(−3.83−3.21i)T2 |
| 7 | 1+(−2.16−3.74i)T+(−3.5+6.06i)T2 |
| 11 | 1−2.72iT−11T2 |
| 13 | 1+(1.29+3.55i)T+(−9.95+8.35i)T2 |
| 17 | 1+(−0.00982+0.0269i)T+(−13.0−10.9i)T2 |
| 23 | 1+(5.97+1.05i)T+(21.6+7.86i)T2 |
| 29 | 1+(0.592−3.35i)T+(−27.2−9.91i)T2 |
| 31 | 1+3.60iT−31T2 |
| 37 | 1−7.25iT−37T2 |
| 41 | 1+(2.90−2.43i)T+(7.11−40.3i)T2 |
| 43 | 1+(0.543+3.08i)T+(−40.4+14.7i)T2 |
| 47 | 1+(7.07+1.24i)T+(44.1+16.0i)T2 |
| 53 | 1+(−4.24−3.56i)T+(9.20+52.1i)T2 |
| 59 | 1+(1.88+10.6i)T+(−55.4+20.1i)T2 |
| 61 | 1+(−9.95+3.62i)T+(46.7−39.2i)T2 |
| 67 | 1+(−6.64+7.91i)T+(−11.6−65.9i)T2 |
| 71 | 1+(4.93−4.13i)T+(12.3−69.9i)T2 |
| 73 | 1+(−1.86−10.5i)T+(−68.5+24.9i)T2 |
| 79 | 1+(1.76−4.86i)T+(−60.5−50.7i)T2 |
| 83 | 1+(7.70−4.44i)T+(41.5−71.8i)T2 |
| 89 | 1+(−1.81+10.2i)T+(−83.6−30.4i)T2 |
| 97 | 1+(0.845+1.00i)T+(−16.8+95.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.44115334775737824001275167297, −11.65499890247807057306865878406, −11.10936798843308199860817145375, −9.938712594682753627633043183589, −8.238584297944481069611378899553, −6.77174823297798247028146659804, −5.56978337036689272962954494026, −4.85832335020322644656949022876, −2.88065359806123175283508203152, −1.95529027207016422326907919172,
3.80626365783300294641625455862, 4.33423180142113164692504341339, 5.34270592599999670991816940507, 6.46161988222635116305808817171, 7.68084850263016354970411211488, 8.614520039443079548155997227981, 10.25942231786318472738369990331, 11.45450845729989728163747941467, 12.15709455445909574100916041652, 13.46514837534700346438075072783