L(s) = 1 | + (1.98 − 1.66i)2-s + (0.915 + 1.47i)3-s + (0.819 − 4.64i)4-s + (−1.06 + 2.92i)5-s + (4.26 + 1.39i)6-s + (−1.52 − 2.64i)7-s + (−3.52 − 6.09i)8-s + (−1.32 + 2.69i)9-s + (2.76 + 7.58i)10-s − 3.42i·11-s + (7.57 − 3.05i)12-s + (0.864 + 2.37i)13-s + (−7.42 − 2.70i)14-s + (−5.27 + 1.11i)15-s + (−8.28 − 3.01i)16-s + (−1.79 + 4.92i)17-s + ⋯ |
L(s) = 1 | + (1.40 − 1.17i)2-s + (0.528 + 0.848i)3-s + (0.409 − 2.32i)4-s + (−0.476 + 1.30i)5-s + (1.74 + 0.568i)6-s + (−0.576 − 0.998i)7-s + (−1.24 − 2.15i)8-s + (−0.440 + 0.897i)9-s + (0.872 + 2.39i)10-s − 1.03i·11-s + (2.18 − 0.880i)12-s + (0.239 + 0.658i)13-s + (−1.98 − 0.722i)14-s + (−1.36 + 0.287i)15-s + (−2.07 − 0.754i)16-s + (−0.434 + 1.19i)17-s + ⋯ |
Λ(s)=(=(171s/2ΓC(s)L(s)(0.670+0.742i)Λ(2−s)
Λ(s)=(=(171s/2ΓC(s+1/2)L(s)(0.670+0.742i)Λ(1−s)
Degree: |
2 |
Conductor: |
171
= 32⋅19
|
Sign: |
0.670+0.742i
|
Analytic conductor: |
1.36544 |
Root analytic conductor: |
1.16852 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ171(110,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 171, ( :1/2), 0.670+0.742i)
|
Particular Values
L(1) |
≈ |
2.08961−0.928351i |
L(21) |
≈ |
2.08961−0.928351i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.915−1.47i)T |
| 19 | 1+(3.57+2.49i)T |
good | 2 | 1+(−1.98+1.66i)T+(0.347−1.96i)T2 |
| 5 | 1+(1.06−2.92i)T+(−3.83−3.21i)T2 |
| 7 | 1+(1.52+2.64i)T+(−3.5+6.06i)T2 |
| 11 | 1+3.42iT−11T2 |
| 13 | 1+(−0.864−2.37i)T+(−9.95+8.35i)T2 |
| 17 | 1+(1.79−4.92i)T+(−13.0−10.9i)T2 |
| 23 | 1+(−2.96−0.522i)T+(21.6+7.86i)T2 |
| 29 | 1+(0.536−3.04i)T+(−27.2−9.91i)T2 |
| 31 | 1+0.794iT−31T2 |
| 37 | 1+7.02iT−37T2 |
| 41 | 1+(−4.12+3.46i)T+(7.11−40.3i)T2 |
| 43 | 1+(0.331+1.88i)T+(−40.4+14.7i)T2 |
| 47 | 1+(−12.8−2.26i)T+(44.1+16.0i)T2 |
| 53 | 1+(−3.01−2.53i)T+(9.20+52.1i)T2 |
| 59 | 1+(0.194+1.10i)T+(−55.4+20.1i)T2 |
| 61 | 1+(1.80−0.655i)T+(46.7−39.2i)T2 |
| 67 | 1+(0.412−0.491i)T+(−11.6−65.9i)T2 |
| 71 | 1+(5.62−4.72i)T+(12.3−69.9i)T2 |
| 73 | 1+(−0.808−4.58i)T+(−68.5+24.9i)T2 |
| 79 | 1+(2.33−6.41i)T+(−60.5−50.7i)T2 |
| 83 | 1+(1.59−0.918i)T+(41.5−71.8i)T2 |
| 89 | 1+(−2.03+11.5i)T+(−83.6−30.4i)T2 |
| 97 | 1+(9.52+11.3i)T+(−16.8+95.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.82198994229207188970906133883, −11.26557216166821284544930107685, −10.81843098249841656447365449014, −10.36178907271571852825500870562, −8.933921227648752327218134862112, −7.05865010962978537891688211138, −5.90620644586371051832012080784, −4.14104580933507858536697868680, −3.69063208915605254230255907950, −2.61315046738754447422858556097,
2.74769515233384640201927508964, 4.29519186936832943303082880676, 5.39051103503652240538669954350, 6.45522344545010131963087835525, 7.53538850035874915860778105243, 8.416519691851872697336088383125, 9.245841628767532322224238918102, 11.89388735658571010887104156842, 12.38060476896402524028946297027, 12.95898318351921147727940315993