L(s) = 1 | + 2-s + 4-s + 8-s − 9-s + 2·13-s + 16-s − 17-s − 18-s + 2·26-s + 32-s − 34-s − 36-s − 49-s + 2·52-s − 2·53-s + 64-s − 68-s − 72-s + 81-s − 2·89-s − 98-s − 2·101-s + 2·104-s − 2·106-s − 2·117-s + ⋯ |
L(s) = 1 | + 2-s + 4-s + 8-s − 9-s + 2·13-s + 16-s − 17-s − 18-s + 2·26-s + 32-s − 34-s − 36-s − 49-s + 2·52-s − 2·53-s + 64-s − 68-s − 72-s + 81-s − 2·89-s − 98-s − 2·101-s + 2·104-s − 2·106-s − 2·117-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.113874648\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.113874648\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 5 | \( 1 \) |
| 17 | \( 1 + T \) |
good | 3 | \( 1 + T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( ( 1 - T )^{2} \) |
| 19 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( ( 1 + T )^{2} \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( ( 1 + T )^{2} \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.498844936416581133099689775269, −8.545512767504470141868270146426, −8.027504814865453575327452767829, −6.77974772835202928172017816387, −6.20796791261749871908222624526, −5.54053055292698683506258227511, −4.51884831905380048511814896770, −3.62962237744920929049211856267, −2.83565499262466302597795104399, −1.58618694677452289913428165946,
1.58618694677452289913428165946, 2.83565499262466302597795104399, 3.62962237744920929049211856267, 4.51884831905380048511814896770, 5.54053055292698683506258227511, 6.20796791261749871908222624526, 6.77974772835202928172017816387, 8.027504814865453575327452767829, 8.545512767504470141868270146426, 9.498844936416581133099689775269