| L(s) = 1 | + (0.156 − 0.987i)2-s + (−0.951 − 0.309i)4-s + (0.453 − 0.891i)5-s + (−0.453 + 0.891i)8-s + (−0.987 + 0.156i)9-s + (−0.809 − 0.587i)10-s + (−1.44 − 1.04i)13-s + (0.809 + 0.587i)16-s + (−0.951 − 0.309i)17-s + i·18-s + (−0.707 + 0.707i)20-s + (−0.587 − 0.809i)25-s + (−1.26 + 1.26i)26-s + (−0.0819 − 1.04i)29-s + (0.707 − 0.707i)32-s + ⋯ |
| L(s) = 1 | + (0.156 − 0.987i)2-s + (−0.951 − 0.309i)4-s + (0.453 − 0.891i)5-s + (−0.453 + 0.891i)8-s + (−0.987 + 0.156i)9-s + (−0.809 − 0.587i)10-s + (−1.44 − 1.04i)13-s + (0.809 + 0.587i)16-s + (−0.951 − 0.309i)17-s + i·18-s + (−0.707 + 0.707i)20-s + (−0.587 − 0.809i)25-s + (−1.26 + 1.26i)26-s + (−0.0819 − 1.04i)29-s + (0.707 − 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.965 - 0.261i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.965 - 0.261i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6925118874\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6925118874\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.156 + 0.987i)T \) |
| 5 | \( 1 + (-0.453 + 0.891i)T \) |
| 17 | \( 1 + (0.951 + 0.309i)T \) |
| good | 3 | \( 1 + (0.987 - 0.156i)T^{2} \) |
| 7 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 11 | \( 1 + (0.891 - 0.453i)T^{2} \) |
| 13 | \( 1 + (1.44 + 1.04i)T + (0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 23 | \( 1 + (-0.891 + 0.453i)T^{2} \) |
| 29 | \( 1 + (0.0819 + 1.04i)T + (-0.987 + 0.156i)T^{2} \) |
| 31 | \( 1 + (-0.156 + 0.987i)T^{2} \) |
| 37 | \( 1 + (-0.453 - 0.108i)T + (0.891 + 0.453i)T^{2} \) |
| 41 | \( 1 + (-0.0819 - 0.133i)T + (-0.453 + 0.891i)T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (0.412 + 0.809i)T + (-0.587 + 0.809i)T^{2} \) |
| 59 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 61 | \( 1 + (-1.93 + 0.465i)T + (0.891 - 0.453i)T^{2} \) |
| 67 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 71 | \( 1 + (-0.987 + 0.156i)T^{2} \) |
| 73 | \( 1 + (-1.29 - 0.794i)T + (0.453 + 0.891i)T^{2} \) |
| 79 | \( 1 + (-0.156 - 0.987i)T^{2} \) |
| 83 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
| 89 | \( 1 + (-1.16 - 1.59i)T + (-0.309 + 0.951i)T^{2} \) |
| 97 | \( 1 + (1.93 - 0.152i)T + (0.987 - 0.156i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.416474034835083225793130286764, −8.377363414416495843285669402119, −7.970757666728143355207348125654, −6.48926744737033074636607014295, −5.35508454209393385189052060659, −5.10730787484992610551875498792, −4.05502952943983892398903559396, −2.76616329809908972396911609625, −2.14432600264672687498905236610, −0.47025372749124063868146384672,
2.23028156091514542771601116508, 3.21379693743130048130159594572, 4.35103918484994077236980668076, 5.22621571413292504461105217089, 6.09557812215492564269309493535, 6.76998408844528262455298448076, 7.33204206269638320721109802714, 8.306669164293633922889766242390, 9.189305642129969451818951816569, 9.612311343591421331586015629997