| L(s) = 1 | + (0.156 − 0.987i)2-s + (−0.951 − 0.309i)4-s + (−0.951 + 0.309i)5-s + (−0.453 + 0.891i)8-s + (0.987 − 0.156i)9-s + (0.156 + 0.987i)10-s + (0.734 + 0.533i)13-s + (0.809 + 0.587i)16-s + (0.587 − 0.809i)17-s − i·18-s + 20-s + (0.809 − 0.587i)25-s + (0.642 − 0.642i)26-s + (−0.465 + 0.0366i)29-s + (0.707 − 0.707i)32-s + ⋯ |
| L(s) = 1 | + (0.156 − 0.987i)2-s + (−0.951 − 0.309i)4-s + (−0.951 + 0.309i)5-s + (−0.453 + 0.891i)8-s + (0.987 − 0.156i)9-s + (0.156 + 0.987i)10-s + (0.734 + 0.533i)13-s + (0.809 + 0.587i)16-s + (0.587 − 0.809i)17-s − i·18-s + 20-s + (0.809 − 0.587i)25-s + (0.642 − 0.642i)26-s + (−0.465 + 0.0366i)29-s + (0.707 − 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.234 + 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.234 + 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.023560282\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.023560282\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.156 + 0.987i)T \) |
| 5 | \( 1 + (0.951 - 0.309i)T \) |
| 17 | \( 1 + (-0.587 + 0.809i)T \) |
| good | 3 | \( 1 + (-0.987 + 0.156i)T^{2} \) |
| 7 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.891 + 0.453i)T^{2} \) |
| 13 | \( 1 + (-0.734 - 0.533i)T + (0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 23 | \( 1 + (0.891 - 0.453i)T^{2} \) |
| 29 | \( 1 + (0.465 - 0.0366i)T + (0.987 - 0.156i)T^{2} \) |
| 31 | \( 1 + (0.156 - 0.987i)T^{2} \) |
| 37 | \( 1 + (-0.243 + 1.01i)T + (-0.891 - 0.453i)T^{2} \) |
| 41 | \( 1 + (-1.29 + 0.794i)T + (0.453 - 0.891i)T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (0.809 + 1.58i)T + (-0.587 + 0.809i)T^{2} \) |
| 59 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 61 | \( 1 + (-0.303 - 1.26i)T + (-0.891 + 0.453i)T^{2} \) |
| 67 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 71 | \( 1 + (0.987 - 0.156i)T^{2} \) |
| 73 | \( 1 + (0.0819 - 0.133i)T + (-0.453 - 0.891i)T^{2} \) |
| 79 | \( 1 + (0.156 + 0.987i)T^{2} \) |
| 83 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
| 89 | \( 1 + (0.183 + 0.253i)T + (-0.309 + 0.951i)T^{2} \) |
| 97 | \( 1 + (-0.133 - 1.70i)T + (-0.987 + 0.156i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.435044044381158409625149049611, −8.811427925520874066059853648033, −7.78277860176848294191916754841, −7.14867374085626483080036910030, −6.04752655997511602911779991338, −4.94052289336313031256562978626, −4.06054304061874433003140868262, −3.56401379160342003392267714629, −2.37442136467227705873612271158, −1.01895331307235346970436082094,
1.17841441402173499584502073447, 3.26463874177786480926072335759, 4.04929793684059510875875924749, 4.72572554698676176657010841783, 5.72483332222134281141714400923, 6.53748337422486268295506711457, 7.50102899865609930574760627708, 7.925954543502378092545270462034, 8.632590242598946440853987628774, 9.508886217435154291197327270271