L(s) = 1 | + 326.·2-s − 2.24e3i·3-s + 7.36e4·4-s + 2.24e5i·5-s − 7.30e5i·6-s + 1.90e6i·7-s + 1.33e7·8-s + 9.32e6·9-s + 7.33e7i·10-s + 3.89e7i·11-s − 1.65e8i·12-s − 1.61e8·13-s + 6.19e8i·14-s + 5.03e8·15-s + 1.93e9·16-s + (1.45e9 − 8.66e8i)17-s + ⋯ |
L(s) = 1 | + 1.80·2-s − 0.591i·3-s + 2.24·4-s + 1.28i·5-s − 1.06i·6-s + 0.872i·7-s + 2.24·8-s + 0.650·9-s + 2.31i·10-s + 0.602i·11-s − 1.32i·12-s − 0.713·13-s + 1.57i·14-s + 0.761·15-s + 1.80·16-s + (0.858 − 0.512i)17-s + ⋯ |
Λ(s)=(=(17s/2ΓC(s)L(s)(0.858−0.512i)Λ(16−s)
Λ(s)=(=(17s/2ΓC(s+15/2)L(s)(0.858−0.512i)Λ(1−s)
Degree: |
2 |
Conductor: |
17
|
Sign: |
0.858−0.512i
|
Analytic conductor: |
24.2578 |
Root analytic conductor: |
4.92523 |
Motivic weight: |
15 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ17(16,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 17, ( :15/2), 0.858−0.512i)
|
Particular Values
L(8) |
≈ |
6.030857737 |
L(21) |
≈ |
6.030857737 |
L(217) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 17 | 1+(−1.45e9+8.66e8i)T |
good | 2 | 1−326.T+3.27e4T2 |
| 3 | 1+2.24e3iT−1.43e7T2 |
| 5 | 1−2.24e5iT−3.05e10T2 |
| 7 | 1−1.90e6iT−4.74e12T2 |
| 11 | 1−3.89e7iT−4.17e15T2 |
| 13 | 1+1.61e8T+5.11e16T2 |
| 19 | 1−1.70e9T+1.51e19T2 |
| 23 | 1+2.85e10iT−2.66e20T2 |
| 29 | 1+2.44e10iT−8.62e21T2 |
| 31 | 1−2.75e11iT−2.34e22T2 |
| 37 | 1−5.05e10iT−3.33e23T2 |
| 41 | 1+1.19e12iT−1.55e24T2 |
| 43 | 1+9.60e11T+3.17e24T2 |
| 47 | 1+1.33e12T+1.20e25T2 |
| 53 | 1+1.42e13T+7.31e25T2 |
| 59 | 1−3.43e13T+3.65e26T2 |
| 61 | 1+3.02e13iT−6.02e26T2 |
| 67 | 1+8.15e13T+2.46e27T2 |
| 71 | 1+1.45e13iT−5.87e27T2 |
| 73 | 1−7.56e12iT−8.90e27T2 |
| 79 | 1+2.54e14iT−2.91e28T2 |
| 83 | 1−1.50e14T+6.11e28T2 |
| 89 | 1+3.18e14T+1.74e29T2 |
| 97 | 1−9.45e14iT−6.33e29T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.84060902799546180003653737664, −14.15048214469853668095258639636, −12.61782530608958091773669371700, −11.94458308839524855739307058496, −10.34081688486697533497338124752, −7.30162850591679009965555427860, −6.46122436173923843237014929840, −4.90339260835715152284704461738, −3.10013032326691276885144255952, −2.10675694517766282358331810080,
1.30655157747277102605595633127, 3.55705611278455970896714645673, 4.54086785476175580412229710422, 5.58505355873626104733890548921, 7.51776648301407033685987023177, 9.837092501510907203783014984631, 11.49390152049023548652316132944, 12.78934385246879192296509552022, 13.58219417353255317573917155353, 14.96329486189237143862846159820