Properties

Label 2-169065-1.1-c1-0-6
Degree $2$
Conductor $169065$
Sign $1$
Analytic cond. $1349.99$
Root an. cond. $36.7422$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s + 5-s + 3·7-s − 2·10-s − 5·11-s + 13-s − 6·14-s − 4·16-s + 2·19-s + 2·20-s + 10·22-s − 23-s + 25-s − 2·26-s + 6·28-s + 10·29-s + 2·31-s + 8·32-s + 3·35-s + 3·37-s − 4·38-s − 9·41-s − 4·43-s − 10·44-s + 2·46-s − 10·47-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s + 0.447·5-s + 1.13·7-s − 0.632·10-s − 1.50·11-s + 0.277·13-s − 1.60·14-s − 16-s + 0.458·19-s + 0.447·20-s + 2.13·22-s − 0.208·23-s + 1/5·25-s − 0.392·26-s + 1.13·28-s + 1.85·29-s + 0.359·31-s + 1.41·32-s + 0.507·35-s + 0.493·37-s − 0.648·38-s − 1.40·41-s − 0.609·43-s − 1.50·44-s + 0.294·46-s − 1.45·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169065 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169065 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169065\)    =    \(3^{2} \cdot 5 \cdot 13 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1349.99\)
Root analytic conductor: \(36.7422\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 169065,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.314625900\)
\(L(\frac12)\) \(\approx\) \(1.314625900\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
13 \( 1 - T \)
17 \( 1 \)
good2 \( 1 + p T + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + T + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 - 3 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 10 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 11 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 15 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 11 T + p T^{2} \)
83 \( 1 + 8 T + p T^{2} \)
89 \( 1 - 11 T + p T^{2} \)
97 \( 1 - 9 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.23764201417959, −12.82374594225671, −12.06929528740822, −11.56366833795984, −11.23477752932171, −10.64908853270225, −10.26553943486036, −9.981107105811277, −9.464753601739223, −8.818975112329332, −8.260986841167216, −8.062035147055409, −7.836129339417791, −6.959243175891872, −6.656700401580762, −5.963530865750501, −5.230694800131958, −4.808668594302607, −4.582882679832845, −3.441553787539279, −2.885677052840079, −2.164314039718959, −1.783847593627246, −1.082822052639379, −0.4689294424650835, 0.4689294424650835, 1.082822052639379, 1.783847593627246, 2.164314039718959, 2.885677052840079, 3.441553787539279, 4.582882679832845, 4.808668594302607, 5.230694800131958, 5.963530865750501, 6.656700401580762, 6.959243175891872, 7.836129339417791, 8.062035147055409, 8.260986841167216, 8.818975112329332, 9.464753601739223, 9.981107105811277, 10.26553943486036, 10.64908853270225, 11.23477752932171, 11.56366833795984, 12.06929528740822, 12.82374594225671, 13.23764201417959

Graph of the $Z$-function along the critical line