Properties

Label 2-1690-13.12-c1-0-42
Degree $2$
Conductor $1690$
Sign $-0.999 + 0.0304i$
Analytic cond. $13.4947$
Root an. cond. $3.67351$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s + 0.445·3-s − 4-s + i·5-s − 0.445i·6-s + 3.24i·7-s + i·8-s − 2.80·9-s + 10-s − 1.60i·11-s − 0.445·12-s + 3.24·14-s + 0.445i·15-s + 16-s − 3.10·17-s + 2.80i·18-s + ⋯
L(s)  = 1  − 0.707i·2-s + 0.256·3-s − 0.5·4-s + 0.447i·5-s − 0.181i·6-s + 1.22i·7-s + 0.353i·8-s − 0.933·9-s + 0.316·10-s − 0.483i·11-s − 0.128·12-s + 0.867·14-s + 0.114i·15-s + 0.250·16-s − 0.754·17-s + 0.660i·18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0304i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0304i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1690\)    =    \(2 \cdot 5 \cdot 13^{2}\)
Sign: $-0.999 + 0.0304i$
Analytic conductor: \(13.4947\)
Root analytic conductor: \(3.67351\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1690} (1351, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1690,\ (\ :1/2),\ -0.999 + 0.0304i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2931054354\)
\(L(\frac12)\) \(\approx\) \(0.2931054354\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
5 \( 1 - iT \)
13 \( 1 \)
good3 \( 1 - 0.445T + 3T^{2} \)
7 \( 1 - 3.24iT - 7T^{2} \)
11 \( 1 + 1.60iT - 11T^{2} \)
17 \( 1 + 3.10T + 17T^{2} \)
19 \( 1 + 2.89iT - 19T^{2} \)
23 \( 1 + 6.78T + 23T^{2} \)
29 \( 1 - 4.04T + 29T^{2} \)
31 \( 1 + 8.31iT - 31T^{2} \)
37 \( 1 + 3.20iT - 37T^{2} \)
41 \( 1 + 10.6iT - 41T^{2} \)
43 \( 1 - 5.18T + 43T^{2} \)
47 \( 1 - 3.97iT - 47T^{2} \)
53 \( 1 + 11.0T + 53T^{2} \)
59 \( 1 - 5.28iT - 59T^{2} \)
61 \( 1 + 13.1T + 61T^{2} \)
67 \( 1 + 12.3iT - 67T^{2} \)
71 \( 1 + 7.50iT - 71T^{2} \)
73 \( 1 + 12.2iT - 73T^{2} \)
79 \( 1 + 11.3T + 79T^{2} \)
83 \( 1 - 10.4iT - 83T^{2} \)
89 \( 1 - 11.3iT - 89T^{2} \)
97 \( 1 - 6.05iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.090152107249930159482059246123, −8.375143000682262358332462660966, −7.62917094904280169254442835309, −6.18349725390519589682764457241, −5.84902546377622210531582869879, −4.70633106533432981004301956156, −3.61332617184372429156476922255, −2.63693773364641435899496283515, −2.15576736476948090354762430980, −0.10342981475313862934150192432, 1.47678397867495301607334778007, 3.02472136363226426617508838911, 4.13310067664699463821730732674, 4.71489576771687878618657847888, 5.81273382370289109373828120160, 6.57520667696885297814178823278, 7.41449505941970108106747184030, 8.190068436850264670659186561357, 8.659853152645122239509153983093, 9.714547162236281875617842142831

Graph of the $Z$-function along the critical line