L(s) = 1 | + 3-s + 5-s − 7-s + 9-s + 15-s − 21-s + 25-s + 27-s − 35-s − 2·41-s + 2·43-s + 45-s − 2·47-s + 49-s − 63-s − 2·67-s + 75-s + 81-s − 2·83-s + 2·89-s − 2·101-s − 105-s − 2·109-s + ⋯ |
L(s) = 1 | + 3-s + 5-s − 7-s + 9-s + 15-s − 21-s + 25-s + 27-s − 35-s − 2·41-s + 2·43-s + 45-s − 2·47-s + 49-s − 63-s − 2·67-s + 75-s + 81-s − 2·83-s + 2·89-s − 2·101-s − 105-s − 2·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.713650301\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.713650301\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 + T \) |
good | 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 + T )^{2} \) |
| 43 | \( ( 1 - T )^{2} \) |
| 47 | \( ( 1 + T )^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( ( 1 + T )^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( ( 1 + T )^{2} \) |
| 89 | \( ( 1 - T )^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.472046167883625039644653877451, −8.945603530536641958839738365786, −8.089712012370944163294756561211, −7.06843295039241849199355012227, −6.47562437765883722564975724771, −5.55642465345471739066920195508, −4.46362585102897919927189279131, −3.36432744990175912605880898222, −2.65779068792870325911416746662, −1.57104991769967852176906065628,
1.57104991769967852176906065628, 2.65779068792870325911416746662, 3.36432744990175912605880898222, 4.46362585102897919927189279131, 5.55642465345471739066920195508, 6.47562437765883722564975724771, 7.06843295039241849199355012227, 8.089712012370944163294756561211, 8.945603530536641958839738365786, 9.472046167883625039644653877451