L(s) = 1 | + (0.707 + 0.707i)3-s + (−1.98 − 1.02i)5-s + (2.56 + 0.630i)7-s + 1.00i·9-s − 2.36·11-s + (−0.918 − 0.918i)13-s + (−0.679 − 2.13i)15-s + (−3.62 + 3.62i)17-s − 1.07·19-s + (1.37 + 2.26i)21-s + (−1.45 + 1.45i)23-s + (2.89 + 4.07i)25-s + (−0.707 + 0.707i)27-s + 7.72i·29-s − 1.21i·31-s + ⋯ |
L(s) = 1 | + (0.408 + 0.408i)3-s + (−0.888 − 0.458i)5-s + (0.971 + 0.238i)7-s + 0.333i·9-s − 0.712·11-s + (−0.254 − 0.254i)13-s + (−0.175 − 0.550i)15-s + (−0.878 + 0.878i)17-s − 0.247·19-s + (0.299 + 0.493i)21-s + (−0.302 + 0.302i)23-s + (0.578 + 0.815i)25-s + (−0.136 + 0.136i)27-s + 1.43i·29-s − 0.218i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.582 - 0.812i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.582 - 0.812i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.009017855\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.009017855\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + (1.98 + 1.02i)T \) |
| 7 | \( 1 + (-2.56 - 0.630i)T \) |
good | 11 | \( 1 + 2.36T + 11T^{2} \) |
| 13 | \( 1 + (0.918 + 0.918i)T + 13iT^{2} \) |
| 17 | \( 1 + (3.62 - 3.62i)T - 17iT^{2} \) |
| 19 | \( 1 + 1.07T + 19T^{2} \) |
| 23 | \( 1 + (1.45 - 1.45i)T - 23iT^{2} \) |
| 29 | \( 1 - 7.72iT - 29T^{2} \) |
| 31 | \( 1 + 1.21iT - 31T^{2} \) |
| 37 | \( 1 + (-2.38 - 2.38i)T + 37iT^{2} \) |
| 41 | \( 1 - 8.42iT - 41T^{2} \) |
| 43 | \( 1 + (0.879 - 0.879i)T - 43iT^{2} \) |
| 47 | \( 1 + (-3.67 + 3.67i)T - 47iT^{2} \) |
| 53 | \( 1 + (7.88 - 7.88i)T - 53iT^{2} \) |
| 59 | \( 1 + 8.24T + 59T^{2} \) |
| 61 | \( 1 + 10.1iT - 61T^{2} \) |
| 67 | \( 1 + (6.62 + 6.62i)T + 67iT^{2} \) |
| 71 | \( 1 - 8.21T + 71T^{2} \) |
| 73 | \( 1 + (1.79 + 1.79i)T + 73iT^{2} \) |
| 79 | \( 1 - 12.2iT - 79T^{2} \) |
| 83 | \( 1 + (0.387 + 0.387i)T + 83iT^{2} \) |
| 89 | \( 1 + 7.46T + 89T^{2} \) |
| 97 | \( 1 + (6.92 - 6.92i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.427430030387916058075286449909, −8.731945351943641487952298411982, −8.009320435072117412448012716580, −7.68502220831048525398910470296, −6.43796649943431720072188705526, −5.21283475612040625769589165685, −4.69629534550544070981349661708, −3.84760891598633652847072843046, −2.76313206029139500201972270850, −1.54024465180617954258145342262,
0.35480747828321573847097664531, 2.05269814989151062982542329620, 2.86550326325037397238338333406, 4.13568398066485292482885435819, 4.69025105652311475743680721084, 5.90384367123806379434753997838, 7.02873427449094698048574894078, 7.47295939127852148903224703462, 8.198083444599979232897794516683, 8.813748979801087587829589465605