Properties

Label 2-1680-1.1-c3-0-66
Degree $2$
Conductor $1680$
Sign $-1$
Analytic cond. $99.1232$
Root an. cond. $9.95606$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 5·5-s − 7·7-s + 9·9-s − 12·11-s + 30·13-s + 15·15-s − 134·17-s + 92·19-s − 21·21-s − 112·23-s + 25·25-s + 27·27-s − 58·29-s + 224·31-s − 36·33-s − 35·35-s − 146·37-s + 90·39-s + 18·41-s − 340·43-s + 45·45-s − 208·47-s + 49·49-s − 402·51-s − 754·53-s − 60·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 0.377·7-s + 1/3·9-s − 0.328·11-s + 0.640·13-s + 0.258·15-s − 1.91·17-s + 1.11·19-s − 0.218·21-s − 1.01·23-s + 1/5·25-s + 0.192·27-s − 0.371·29-s + 1.29·31-s − 0.189·33-s − 0.169·35-s − 0.648·37-s + 0.369·39-s + 0.0685·41-s − 1.20·43-s + 0.149·45-s − 0.645·47-s + 1/7·49-s − 1.10·51-s − 1.95·53-s − 0.147·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1680\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(99.1232\)
Root analytic conductor: \(9.95606\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1680,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
5 \( 1 - p T \)
7 \( 1 + p T \)
good11 \( 1 + 12 T + p^{3} T^{2} \)
13 \( 1 - 30 T + p^{3} T^{2} \)
17 \( 1 + 134 T + p^{3} T^{2} \)
19 \( 1 - 92 T + p^{3} T^{2} \)
23 \( 1 + 112 T + p^{3} T^{2} \)
29 \( 1 + 2 p T + p^{3} T^{2} \)
31 \( 1 - 224 T + p^{3} T^{2} \)
37 \( 1 + 146 T + p^{3} T^{2} \)
41 \( 1 - 18 T + p^{3} T^{2} \)
43 \( 1 + 340 T + p^{3} T^{2} \)
47 \( 1 + 208 T + p^{3} T^{2} \)
53 \( 1 + 754 T + p^{3} T^{2} \)
59 \( 1 + 380 T + p^{3} T^{2} \)
61 \( 1 - 718 T + p^{3} T^{2} \)
67 \( 1 + 412 T + p^{3} T^{2} \)
71 \( 1 - 960 T + p^{3} T^{2} \)
73 \( 1 - 1066 T + p^{3} T^{2} \)
79 \( 1 + 896 T + p^{3} T^{2} \)
83 \( 1 + 436 T + p^{3} T^{2} \)
89 \( 1 + 1038 T + p^{3} T^{2} \)
97 \( 1 + 702 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.543481349741917636047345990590, −8.010990647727093230688422972333, −6.85331684118774639790377385827, −6.35881672344508460526435650590, −5.29009273179942624697250231256, −4.35103005648574436351837721012, −3.37514022408927255250730284216, −2.46379457244669572329142236479, −1.49755028586111857837268868380, 0, 1.49755028586111857837268868380, 2.46379457244669572329142236479, 3.37514022408927255250730284216, 4.35103005648574436351837721012, 5.29009273179942624697250231256, 6.35881672344508460526435650590, 6.85331684118774639790377385827, 8.010990647727093230688422972333, 8.543481349741917636047345990590

Graph of the $Z$-function along the critical line