L(s) = 1 | + (−0.647 − 1.25i)2-s + (−0.866 − 0.5i)3-s + (−1.16 + 1.62i)4-s + (−1.61 − 2.79i)5-s + (−0.0679 + 1.41i)6-s + (−1.82 + 1.91i)7-s + (2.79 + 0.406i)8-s + (0.499 + 0.866i)9-s + (−2.46 + 3.83i)10-s + (−1.10 + 1.91i)11-s + (1.82 − 0.829i)12-s − 5.08·13-s + (3.58 + 1.05i)14-s + 3.22i·15-s + (−1.30 − 3.78i)16-s + (−2.73 − 1.57i)17-s + ⋯ |
L(s) = 1 | + (−0.457 − 0.889i)2-s + (−0.499 − 0.288i)3-s + (−0.580 + 0.814i)4-s + (−0.721 − 1.25i)5-s + (−0.0277 + 0.576i)6-s + (−0.690 + 0.723i)7-s + (0.989 + 0.143i)8-s + (0.166 + 0.288i)9-s + (−0.781 + 1.21i)10-s + (−0.333 + 0.577i)11-s + (0.525 − 0.239i)12-s − 1.40·13-s + (0.959 + 0.282i)14-s + 0.833i·15-s + (−0.325 − 0.945i)16-s + (−0.663 − 0.383i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.710 - 0.703i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.710 - 0.703i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0674163 + 0.164036i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0674163 + 0.164036i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.647 + 1.25i)T \) |
| 3 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 + (1.82 - 1.91i)T \) |
good | 5 | \( 1 + (1.61 + 2.79i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.10 - 1.91i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 5.08T + 13T^{2} \) |
| 17 | \( 1 + (2.73 + 1.57i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.93 + 1.69i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.65 - 1.53i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 9.88iT - 29T^{2} \) |
| 31 | \( 1 + (-1.01 + 1.75i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.798 + 0.460i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 5.96iT - 41T^{2} \) |
| 43 | \( 1 + 6.68T + 43T^{2} \) |
| 47 | \( 1 + (1.06 + 1.83i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.12 - 1.80i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (10.6 + 6.14i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.34 - 10.9i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.40 - 7.63i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 11.7iT - 71T^{2} \) |
| 73 | \( 1 + (-7.82 - 4.51i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-9.60 + 5.54i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 3.57iT - 83T^{2} \) |
| 89 | \( 1 + (6.32 - 3.65i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 15.2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.00162776047921555648192389505, −11.65602171136463956046497101373, −9.993444684750665672258967126996, −9.331715983305968459441890667555, −8.199605445242853256541596588754, −7.21882117561627295119158426426, −5.28913235121921851760337275786, −4.31387757325786885068354276053, −2.39568271217269483058336740129, −0.19571935003522894014867638410,
3.40044032444536143800080525607, 4.86316136166993630654289263605, 6.37117697040220676116569109971, 7.06641860084028020749780039585, 7.963456334270321345878028279925, 9.530817539702648579736234917358, 10.42304421158874699033947657544, 10.99980318785460368935636150413, 12.38367730848684206372546712873, 13.72866526629709247035921698389