L(s) = 1 | + (−0.185 + 1.40i)2-s + i·3-s + (−1.93 − 0.520i)4-s + 3.84·5-s + (−1.40 − 0.185i)6-s + (1.62 + 2.09i)7-s + (1.08 − 2.61i)8-s − 9-s + (−0.713 + 5.38i)10-s − 4.54·11-s + (0.520 − 1.93i)12-s − 1.81·13-s + (−3.23 + 1.88i)14-s + 3.84i·15-s + (3.45 + 2.00i)16-s − 3.49i·17-s + ⋯ |
L(s) = 1 | + (−0.131 + 0.991i)2-s + 0.577i·3-s + (−0.965 − 0.260i)4-s + 1.71·5-s + (−0.572 − 0.0757i)6-s + (0.612 + 0.790i)7-s + (0.384 − 0.923i)8-s − 0.333·9-s + (−0.225 + 1.70i)10-s − 1.37·11-s + (0.150 − 0.557i)12-s − 0.503·13-s + (−0.863 + 0.503i)14-s + 0.992i·15-s + (0.864 + 0.502i)16-s − 0.846i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.261 - 0.965i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.261 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.742018 + 0.970153i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.742018 + 0.970153i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.185 - 1.40i)T \) |
| 3 | \( 1 - iT \) |
| 7 | \( 1 + (-1.62 - 2.09i)T \) |
good | 5 | \( 1 - 3.84T + 5T^{2} \) |
| 11 | \( 1 + 4.54T + 11T^{2} \) |
| 13 | \( 1 + 1.81T + 13T^{2} \) |
| 17 | \( 1 + 3.49iT - 17T^{2} \) |
| 19 | \( 1 - 1.68iT - 19T^{2} \) |
| 23 | \( 1 + 5.00iT - 23T^{2} \) |
| 29 | \( 1 - 1.81iT - 29T^{2} \) |
| 31 | \( 1 - 5.34T + 31T^{2} \) |
| 37 | \( 1 - 1.42iT - 37T^{2} \) |
| 41 | \( 1 + 8.97iT - 41T^{2} \) |
| 43 | \( 1 + 8.03T + 43T^{2} \) |
| 47 | \( 1 - 4.83T + 47T^{2} \) |
| 53 | \( 1 + 5.87iT - 53T^{2} \) |
| 59 | \( 1 + 8.46iT - 59T^{2} \) |
| 61 | \( 1 - 3.01T + 61T^{2} \) |
| 67 | \( 1 + 4.42T + 67T^{2} \) |
| 71 | \( 1 + 1.47iT - 71T^{2} \) |
| 73 | \( 1 + 6.98iT - 73T^{2} \) |
| 79 | \( 1 - 2.97iT - 79T^{2} \) |
| 83 | \( 1 - 10.5iT - 83T^{2} \) |
| 89 | \( 1 - 15.9iT - 89T^{2} \) |
| 97 | \( 1 - 11.6iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.44422855751985934954281314389, −12.36659257008600182369742670165, −10.59480811126995830307583115016, −9.910713590713552817499522555530, −9.035108328039973717966425613466, −8.072320240787188643399665894658, −6.55164190988669196319392380657, −5.36550930476513039678646565963, −5.01255061582048498819200376616, −2.46491380305963473045524775153,
1.54742883287721504472994871636, 2.71571812567618162852117446243, 4.79669305692102020462215924952, 5.83351059594051212677776957859, 7.46912791735707080031109524565, 8.547430955099264982981820142004, 9.882836668975268401790708905522, 10.36541113138842374469363225392, 11.39984614782715619070196050757, 12.73919832982095361591331972726