L(s) = 1 | + (0.221 − 1.39i)2-s + (0.866 − 0.5i)3-s + (−1.90 − 0.617i)4-s + (0.225 − 0.390i)5-s + (−0.507 − 1.32i)6-s + (−0.458 − 2.60i)7-s + (−1.28 + 2.52i)8-s + (0.499 − 0.866i)9-s + (−0.495 − 0.401i)10-s + (−0.360 − 0.623i)11-s + (−1.95 + 0.416i)12-s + 3.48·13-s + (−3.74 + 0.0641i)14-s − 0.451i·15-s + (3.23 + 2.34i)16-s + (−3.55 + 2.05i)17-s + ⋯ |
L(s) = 1 | + (0.156 − 0.987i)2-s + (0.499 − 0.288i)3-s + (−0.951 − 0.308i)4-s + (0.100 − 0.174i)5-s + (−0.206 − 0.538i)6-s + (−0.173 − 0.984i)7-s + (−0.453 + 0.891i)8-s + (0.166 − 0.288i)9-s + (−0.156 − 0.126i)10-s + (−0.108 − 0.188i)11-s + (−0.564 + 0.120i)12-s + 0.967·13-s + (−0.999 + 0.0171i)14-s − 0.116i·15-s + (0.809 + 0.587i)16-s + (−0.862 + 0.498i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.410 + 0.911i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.410 + 0.911i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.704645 - 1.09051i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.704645 - 1.09051i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.221 + 1.39i)T \) |
| 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (0.458 + 2.60i)T \) |
good | 5 | \( 1 + (-0.225 + 0.390i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (0.360 + 0.623i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 3.48T + 13T^{2} \) |
| 17 | \( 1 + (3.55 - 2.05i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.97 - 2.29i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.0459 - 0.0265i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 7.85iT - 29T^{2} \) |
| 31 | \( 1 + (4.58 + 7.93i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-7.51 - 4.33i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 3.94iT - 41T^{2} \) |
| 43 | \( 1 - 5.17T + 43T^{2} \) |
| 47 | \( 1 + (-0.460 + 0.796i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2.71 - 1.56i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (4.86 - 2.80i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.54 - 4.41i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.93 + 8.54i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 11.1iT - 71T^{2} \) |
| 73 | \( 1 + (3.33 - 1.92i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (8.40 + 4.85i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 9.53iT - 83T^{2} \) |
| 89 | \( 1 + (12.6 + 7.28i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 5.14iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.74091162790917764175059853256, −11.34951296015502449061295448164, −10.65054519558561786642371957017, −9.514233271069988349886644807883, −8.631989708638726250827305196535, −7.42709391550978124860431380797, −5.88195723680206667020632076573, −4.27230703134949571423018271860, −3.23001532832955365449882033399, −1.37841628136049024671613668682,
2.89671662780268044300387028796, 4.43517030377753956623354581897, 5.68275373984258330708553354950, 6.75100797102302425821448601714, 8.017834252071636353668152527614, 8.962943174106604424030507399210, 9.624233735661235413681540005718, 11.11276623742852438700628833936, 12.41995852982402473601607609293, 13.38357347386695341698463438549