L(s) = 1 | + (−0.998 + 1.00i)2-s + (0.390 + 1.68i)3-s + (−0.00659 − 1.99i)4-s + (1.54 + 0.894i)5-s + (−2.08 − 1.29i)6-s + (2.63 + 0.230i)7-s + (2.00 + 1.99i)8-s + (−2.69 + 1.31i)9-s + (−2.44 + 0.658i)10-s + (0.501 + 0.868i)11-s + (3.37 − 0.792i)12-s − 2.47·13-s + (−2.86 + 2.41i)14-s + (−0.904 + 2.96i)15-s + (−3.99 + 0.0263i)16-s + (−3.32 − 5.76i)17-s + ⋯ |
L(s) = 1 | + (−0.705 + 0.708i)2-s + (0.225 + 0.974i)3-s + (−0.00329 − 0.999i)4-s + (0.692 + 0.399i)5-s + (−0.849 − 0.528i)6-s + (0.996 + 0.0869i)7-s + (0.710 + 0.703i)8-s + (−0.898 + 0.439i)9-s + (−0.772 + 0.208i)10-s + (0.151 + 0.261i)11-s + (0.973 − 0.228i)12-s − 0.685·13-s + (−0.764 + 0.644i)14-s + (−0.233 + 0.765i)15-s + (−0.999 + 0.00659i)16-s + (−0.807 − 1.39i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.276 - 0.960i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.276 - 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.597743 + 0.794155i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.597743 + 0.794155i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.998 - 1.00i)T \) |
| 3 | \( 1 + (-0.390 - 1.68i)T \) |
| 7 | \( 1 + (-2.63 - 0.230i)T \) |
good | 5 | \( 1 + (-1.54 - 0.894i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.501 - 0.868i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 2.47T + 13T^{2} \) |
| 17 | \( 1 + (3.32 + 5.76i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.85 - 3.22i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-6.85 - 3.95i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 0.748T + 29T^{2} \) |
| 31 | \( 1 + (-2.87 + 1.65i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.22 - 1.86i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 2.01T + 41T^{2} \) |
| 43 | \( 1 + 9.19iT - 43T^{2} \) |
| 47 | \( 1 + (-1.19 + 2.07i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6.33 + 10.9i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (7.34 - 4.24i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.02 + 3.50i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.89 + 3.98i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 5.46iT - 71T^{2} \) |
| 73 | \( 1 + (5.68 - 3.28i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.53 + 4.39i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 5.65iT - 83T^{2} \) |
| 89 | \( 1 + (7.39 - 12.8i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 1.75iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.64043823237657268490785298657, −11.62882145215073466512596254091, −10.80519573696726124032244652748, −9.844629036107436029080113886853, −9.163875623546569544570273483708, −8.080652925622285221583954032222, −6.90680291842493838146868094879, −5.48057274465507297595271789518, −4.64021867845192934728007096028, −2.32726957215975913717354084240,
1.37570155427610002387879104964, 2.58789442981405495727976601237, 4.62441754964436348600338499754, 6.36104563841320582265555774112, 7.57423283467712565948956298195, 8.561268008739580609431112448696, 9.206951885531377592236420494069, 10.70374857725386098805850008449, 11.40527829911559607031112008201, 12.62982350559623117745019201084