L(s) = 1 | + (−0.998 + 1.00i)2-s + (0.390 + 1.68i)3-s + (−0.00659 − 1.99i)4-s + (1.54 + 0.894i)5-s + (−2.08 − 1.29i)6-s + (2.63 + 0.230i)7-s + (2.00 + 1.99i)8-s + (−2.69 + 1.31i)9-s + (−2.44 + 0.658i)10-s + (0.501 + 0.868i)11-s + (3.37 − 0.792i)12-s − 2.47·13-s + (−2.86 + 2.41i)14-s + (−0.904 + 2.96i)15-s + (−3.99 + 0.0263i)16-s + (−3.32 − 5.76i)17-s + ⋯ |
L(s) = 1 | + (−0.705 + 0.708i)2-s + (0.225 + 0.974i)3-s + (−0.00329 − 0.999i)4-s + (0.692 + 0.399i)5-s + (−0.849 − 0.528i)6-s + (0.996 + 0.0869i)7-s + (0.710 + 0.703i)8-s + (−0.898 + 0.439i)9-s + (−0.772 + 0.208i)10-s + (0.151 + 0.261i)11-s + (0.973 − 0.228i)12-s − 0.685·13-s + (−0.764 + 0.644i)14-s + (−0.233 + 0.765i)15-s + (−0.999 + 0.00659i)16-s + (−0.807 − 1.39i)17-s + ⋯ |
Λ(s)=(=(168s/2ΓC(s)L(s)(−0.276−0.960i)Λ(2−s)
Λ(s)=(=(168s/2ΓC(s+1/2)L(s)(−0.276−0.960i)Λ(1−s)
Degree: |
2 |
Conductor: |
168
= 23⋅3⋅7
|
Sign: |
−0.276−0.960i
|
Analytic conductor: |
1.34148 |
Root analytic conductor: |
1.15822 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ168(5,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 168, ( :1/2), −0.276−0.960i)
|
Particular Values
L(1) |
≈ |
0.597743+0.794155i |
L(21) |
≈ |
0.597743+0.794155i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.998−1.00i)T |
| 3 | 1+(−0.390−1.68i)T |
| 7 | 1+(−2.63−0.230i)T |
good | 5 | 1+(−1.54−0.894i)T+(2.5+4.33i)T2 |
| 11 | 1+(−0.501−0.868i)T+(−5.5+9.52i)T2 |
| 13 | 1+2.47T+13T2 |
| 17 | 1+(3.32+5.76i)T+(−8.5+14.7i)T2 |
| 19 | 1+(1.85−3.22i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−6.85−3.95i)T+(11.5+19.9i)T2 |
| 29 | 1−0.748T+29T2 |
| 31 | 1+(−2.87+1.65i)T+(15.5−26.8i)T2 |
| 37 | 1+(−3.22−1.86i)T+(18.5+32.0i)T2 |
| 41 | 1−2.01T+41T2 |
| 43 | 1+9.19iT−43T2 |
| 47 | 1+(−1.19+2.07i)T+(−23.5−40.7i)T2 |
| 53 | 1+(6.33+10.9i)T+(−26.5+45.8i)T2 |
| 59 | 1+(7.34−4.24i)T+(29.5−51.0i)T2 |
| 61 | 1+(−2.02+3.50i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−6.89+3.98i)T+(33.5−58.0i)T2 |
| 71 | 1−5.46iT−71T2 |
| 73 | 1+(5.68−3.28i)T+(36.5−63.2i)T2 |
| 79 | 1+(−2.53+4.39i)T+(−39.5−68.4i)T2 |
| 83 | 1−5.65iT−83T2 |
| 89 | 1+(7.39−12.8i)T+(−44.5−77.0i)T2 |
| 97 | 1−1.75iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.64043823237657268490785298657, −11.62882145215073466512596254091, −10.80519573696726124032244652748, −9.844629036107436029080113886853, −9.163875623546569544570273483708, −8.080652925622285221583954032222, −6.90680291842493838146868094879, −5.48057274465507297595271789518, −4.64021867845192934728007096028, −2.32726957215975913717354084240,
1.37570155427610002387879104964, 2.58789442981405495727976601237, 4.62441754964436348600338499754, 6.36104563841320582265555774112, 7.57423283467712565948956298195, 8.561268008739580609431112448696, 9.206951885531377592236420494069, 10.70374857725386098805850008449, 11.40527829911559607031112008201, 12.62982350559623117745019201084